Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Brain-wide changes in excitation-inhibition balance of major depressive disorder: a systematic review of topographic patterns of GABA- and glutamatergic alterations

Abstract

The excitation-inhibition (E/I) imbalance is an important molecular pathological feature of major depressive disorder (MDD) as altered GABA and glutamate levels have been found in multiple brain regions in patients. Healthy subjects show topographic organization of the E/I balance (EIB) across various brain regions. We here raise the question of whether such EIB topography is altered in MDD. Therefore, we systematically review the gene and protein expressions of inhibitory GABAergic and excitatory glutamatergic signaling-related molecules in postmortem MDD brain studies as proxies for EIB topography. Searches were conducted through PubMed and 45 research articles were finally included. We found: i) brain-wide GABA- and glutamatergic alterations; ii) attenuated GABAergic with enhanced glutamatergic signaling in the cortical-subcortical limbic system; iii) that GABAergic signaling is decreased in regions comprising the default mode network (DMN) while it is increased in lateral prefrontal cortex (LPFC). These together demonstrate abnormal GABA- and glutamatergic signaling-based EIB topographies in MDD. This enhances our pathophysiological understanding of MDD and carries important therapeutic implications for stimulation treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flow chart.
Fig. 2: Global excitation-inhibition balance changes in the postmortem MDD brain.
Fig. 3: Excitation-inhibition imbalance in cortical-subcortical limbic regions of the postmortem MDD brain.
Fig. 4: Excitation-inhibition imbalance in default mode and lateral prefrontal regions of the postmortem MDD brain.
Fig. 5: Diagram of the key observations.

Similar content being viewed by others

References

  1. Diagnostic and statistical manual of mental disorders. 5th ed. American Psychiatric Association: Washington; 2013.

  2. Bennett MR. The prefrontal-limbic network in depression: modulation by hypothalamus, basal ganglia and midbrain. Prog Neurobiol. 2011;93:468–87.

    Article  CAS  PubMed  Google Scholar 

  3. Li G, Liu Y, Zheng Y, Wu Y, Li D, Liang X, et al. Multiscale neural modeling of resting-state fMRI reveals executive-limbic malfunction as a core mechanism in major depressive disorder. NeuroImage Clin. 2021;31:102758.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry. 2015;72:603–11.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Scalabrini A, Vai B, Poletti S, Damiani S, Mucci C, Colombo C, et al. All roads lead to the default-mode network-global source of DMN abnormalities in major depressive disorder. Neuropsychopharmacology. 2020;45:2058–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu X, Zhang JF, Gu F, Zhang HX, Zhang M, Zhang HS, et al. Altered task modulation of global signal topography in the default-mode network of unmedicated major depressive disorder. J Affect Disord. 2022;297:53–61.

    Article  PubMed  Google Scholar 

  7. Northoff G, Hirjak D, Wolf RC, Magioncalda P, Martino M. All roads lead to the motor cortex: psychomotor mechanisms and their biochemical modulation in psychiatric disorders. Mol Psychiatry. 2021;26:92–102.

    Article  PubMed  Google Scholar 

  8. Song XM, Hu XW, Li Z, Gao Y, Ju X, Liu DY, et al. Reduction of higher-order occipital GABA and impaired visual perception in acute major depressive disorder. Mol Psychiatry. 2021;26:6747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu DY, Ju X, Gao Y, Han JF, Li Z, Hu XW, et al. From molecular to behavior: higher order occipital cortex in major depressive disorder. Cereb Cortex. 2022;32:2129–39.

    Article  PubMed  Google Scholar 

  10. Xia M, Liu J, Mechelli A, Sun X, Ma Q, Wang X, et al. Connectome gradient dysfunction in major depression and its association with gene expression profiles and treatment outcomes. Mol Psychiatry. 2022;27:1384–93.

    Article  CAS  PubMed  Google Scholar 

  11. Godfrey KEM, Gardner AC, Kwon S, Chea W, Muthukumaraswamy SD. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: a systematic review and meta-analysis. J Psychiatr Res. 2018;105:33–44.

    Article  PubMed  Google Scholar 

  12. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and Glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102:75–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Tang Y, Maletic-Savatic M, Sheng J, Zhang X, Zhu Y, et al. Altered neuronal spontaneous activity correlates with glutamate concentration in medial prefrontal cortex of major depressed females: an fMRI-MRS study. J Affect Disord. 2016;201:153–61.

    Article  CAS  PubMed  Google Scholar 

  14. Benson KL, Bottary R, Schoerning L, Baer L, Gonenc A, Eric Jensen J. et al. 1H MRS measurement of cortical GABA and glutamate in primary insomnia and major depressive disorder: relationship to sleep quality and depression severity. J Affect Disord. 2020;274:624–31.

    Article  CAS  PubMed  Google Scholar 

  15. Wang XJ. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat Rev Neurosci. 2020;21:169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Northoff G, Sibille E. Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings. Mol Psychiatry. 2014;19:966–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Z, Zhang H, Xie CM, Zhang M, Shi Y, Song R, et al. Task-related functional magnetic resonance imaging-based neuronavigation for the treatment of depression by individualized repetitive transcranial magnetic stimulation of the visual cortex. Sci China Life Sci. 2021;64:96–106.

    Article  CAS  PubMed  Google Scholar 

  18. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci USA. 2016;113:12574–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ito T, Hearne LJ, Cole MW. A cortical hierarchy of localized and distributed processes revealed via dissociation of task activations, connectivity changes, and intrinsic timescales. NeuroImage. 2020;221:117141.

    Article  PubMed  Google Scholar 

  20. Rolls ET. Limbic systems for emotion and for memory, but no single limbic system. Cortex. 2015;62:119–57.

    Article  PubMed  Google Scholar 

  21. Rolls ET. The cingulate cortex and limbic systems for action, emotion, and memory. Handb Clin Neurol. 2019;166:23–37.

    Article  PubMed  Google Scholar 

  22. Thatcher RW, North DM, Biver CJ. LORETA EEG phase reset of the default mode network. Front Hum Neurosci. 2014;8:529.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao J, Verwer RWH, Gao SF, Qi XR, Lucassen PJ, Kessels HW, et al. Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide. J Psychiatr Res. 2018;102:261–74.

    Article  CAS  PubMed  Google Scholar 

  24. Bielau H, Steiner J, Mawrin C, Trübner K, Brisch R, Meyer-Lotz G, et al. Dysregulation of GABAergic neurotransmission in mood disorders: a postmortem study. Ann N.Y. Acad Sci. 2007;1096:157–69.

    Article  CAS  PubMed  Google Scholar 

  25. Tripp A, Oh H, Guilloux JP, Martinowich K, Lewis DA, Sibille E. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder. Am J Psychiatry. 2012;169:1194–202.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Scifo E, Pabba M, Kapadia F, Ma T, Lewis DA, Tseng GC, et al. Sustained molecular pathology across episodes and remission in major depressive disorder. Biol Psychiatry. 2018;83:81–89.

    Article  CAS  PubMed  Google Scholar 

  27. Thompson Ray M, Weickert CS, Wyatt E, Webster MJ. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 2011;36:195–203.

    Article  PubMed  Google Scholar 

  28. Tripp A, Kota RS, Lewis DA, Sibille E. Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiol Dis. 2011;42:116–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Seney ML, Tripp A, McCune S, Lewis DA, Sibille E. Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression. Neurobiol Dis. 2015;73:213–9.

    Article  CAS  PubMed  Google Scholar 

  30. Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, et al. Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry. 2012;17:1130–42.

    Article  CAS  PubMed  Google Scholar 

  31. Douillard-Guilloux G, Lewis D, Seney ML, Sibille E. Decrease in somatostatin-positive cell density in the amygdala of females with major depression. Depress Anxiety. 2017;34:68–78.

    Article  CAS  PubMed  Google Scholar 

  32. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V, et al. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PloS One. 2009;4:e6585.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP, et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA. 2005;102:15653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gibbons AS, Brooks L, Scarr E, Dean B. AMPA receptor expression is increased post-mortem samples of the anterior cingulate from subjects with major depressive disorder. J Affect Disord. 2012;136:1232–7.

    Article  CAS  PubMed  Google Scholar 

  35. Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, et al. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol. 2013;16:69–82.

    Article  CAS  PubMed  Google Scholar 

  36. Karolewicz B, Szebeni K, Gilmore T, Maciag D, Stockmeier CA, Ordway GA. Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. Int J Neuropsychopharmacol. 2009;12:143–53.

    Article  CAS  PubMed  Google Scholar 

  37. Medina A, Burke S, Thompson RC, Bunney W Jr., Myers RM, Schatzberg A, et al. Glutamate transporters: a key piece in the glutamate puzzle of major depressive disorder. J Psychiatr Res. 2013;47:1150–6.

    Article  PubMed  Google Scholar 

  38. Uezato A, Meador-Woodruff JH, McCullumsmith RE. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord. 2009;11:711–25.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao J, Verwer RW, van Wamelen DJ, Qi XR, Gao SF, Lucassen PJ, et al. Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide. J Psychiatr Res. 2016;82:8–15.

    Article  CAS  PubMed  Google Scholar 

  40. Karolewicz B, Maciag D, O'Dwyer G, Stockmeier CA, Feyissa AM, Rajkowska G. Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol. 2010;13:411–20.

    Article  CAS  PubMed  Google Scholar 

  41. Sibille E, Morris HM, Kota RS, Lewis DA. GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol. 2011;14:721–34.

    Article  CAS  PubMed  Google Scholar 

  42. Rajkowska G, O'Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacol. 2007;32:471–82.

    Article  CAS  Google Scholar 

  43. Oh DH, Son H, Hwang S, Kim SH. Neuropathological abnormalities of astrocytes, GABAergic neurons, and pyramidal neurons in the dorsolateral prefrontal cortices of patients with major depressive disorder. Eur Neuropsychopharmacol. 2012;22:330–8.

    Article  CAS  PubMed  Google Scholar 

  44. Merali Z, Du L, Hrdina P, Palkovits M, Faludi G, Poulter MO. et al. Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region.J Neurosci.2004;24:1478–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klempan TA, Sequeira A, Canetti L, Lalovic A, Ernst C, ffrench-Mullen J, et al. Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol psychiatry. 2009;14:175–89.

    Article  CAS  PubMed  Google Scholar 

  46. Rafalo-Ulinska A, Piotrowska J, Kryczyk A, Opoka W, Sowa-Kucma M, Misztak P, et al. Zinc transporters protein level in postmortem brain of depressed subjects and suicide victims. J Psychiatr Res. 2016;83:220–29.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuro-Psychopharmacol Biol psychiatry. 2009;33:70–5.

    Article  CAS  Google Scholar 

  48. Gottschalk MG, Wesseling H, Guest PC, Bahn S. Proteomic enrichment analysis of psychotic and affective disorders reveals common signatures in presynaptic glutamatergic signaling and energy metabolism. Int J Neuropsychopharmacol. 2014;18:pyu019.

  49. Gilabert-Juan J, Varea E, Guirado R, Blasco-Ibáñez JM, Crespo C, Nácher J. Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients. Neurosci Lett. 2012;530:97–102.

    Article  CAS  PubMed  Google Scholar 

  50. Gray AL, Hyde TM, Deep-Soboslay A, Kleinman JE, Sodhi MS. Sex differences in glutamate receptor gene expression in major depression and suicide. Mol psychiatry. 2015;20:1057–68.

    Article  CAS  PubMed  Google Scholar 

  51. Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacol. 2008;33:2175–86.

    Article  CAS  Google Scholar 

  52. Miguel-Hidalgo JJ, Waltzer R, Whittom AA, Austin MC, Rajkowska G, Stockmeier CA. Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. J Affect Disord. 2010;127:230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xiong Z, Zhang K, Ishima T, Ren Q, Chang L, Chen J, et al. Comparison of rapid and long-lasting antidepressant effects of negative modulators of α5-containing GABA(A) receptors and (R)‑ketamine in a chronic social defeat stress model. Pharmacol, Biochem, Behav. 2018;175:139–45.

    Article  CAS  PubMed  Google Scholar 

  54. Xiong Z, Zhang K, Ren Q, Chang L, Chen J, Hashimoto K. Increased expression of inwardly rectifying Kir4.1 channel in the parietal cortex from patients with major depressive disorder. J Affect Disord. 2019;245:265–69.

    Article  CAS  PubMed  Google Scholar 

  55. Maciag D, Hughes J, O'Dwyer G, Pride Y, Stockmeier CA, Sanacora G, et al. Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol psychiatry. 2010;67:465–70.

    Article  CAS  PubMed  Google Scholar 

  56. Smiley JF, Hackett TA, Bleiwas C, Petkova E, Stankov A, Mann JJ, et al. Reduced GABA neuron density in auditory cerebral cortex of subjects with major depressive disorder. J Chem Neuroanat. 2016;76:108–21.

    Article  CAS  PubMed  Google Scholar 

  57. Matas E, John Francis William D, Toro CT. Abnormal expression of post-synaptic proteins in prefrontal cortex of patients with schizophrenia. Neurosci Lett. 2021;745:135629.

    Article  CAS  PubMed  Google Scholar 

  58. Schür RR, Draisma LW, Wijnen JP, Boks MP, Koevoets MG, Joëls M, et al. Brain GABA levels across psychiatric disorders: a systematic literature review and meta-analysis of (1) H-MRS studies. Hum brain Mapp. 2016;37:3337–52.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Romeo B, Choucha W, Fossati P, Rotge JY. Meta-analysis of central and peripheral γ-aminobutyric acid levels in patients with unipolar and bipolar depression. J psychiatry Neurosci. 2018;43:58–66.

    Article  PubMed  Google Scholar 

  60. Kantrowitz JT, Dong Z, Milak MS, Rashid R, Kegeles LS, Javitt DC, et al. Ventromedial prefrontal cortex/anterior cingulate cortex Glx, glutamate, and GABA levels in medication-free major depressive disorder. Transl psychiatry. 2021;11:419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grimm S, Boesiger P, Beck J, Schuepbach D, Bermpohl F, Walter M, et al. Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology. 2009;34:932–43.

    Article  PubMed  Google Scholar 

  62. Abdallah CG, Hannestad J, Mason GF, Holmes SE, DellaGioia N, Sanacora G, et al. Metabotropic glutamate receptor 5 and glutamate involvement in major depressive disorder: a multimodal imaging study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:449–56.

    PubMed  PubMed Central  Google Scholar 

  63. Northoff G. Psychopathology and pathophysiology of the self in depression - neuropsychiatric hypothesis. J Affect Disord. 2007;104:1–14.

    Article  PubMed  Google Scholar 

  64. Hamilton JP, Farmer M, Fogelman P, Gotlib IH. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol psychiatry. 2015;78:224–30.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Grimm S, Ernst J, Boesiger P, Schuepbach D, Boeker H, Northoff G. Reduced negative BOLD responses in the default-mode network and increased self-focus in depression. World J Biol Psychiatry. 2011;12:627–37.

    Article  PubMed  Google Scholar 

  66. Truong V, Cheng PZ, Lee HC, Lane TJ, Hsu TY, Duncan NW. Occipital gamma-aminobutyric acid and glutamate-glutamine alterations in major depressive disorder: an mrs study and meta-analysis. Psychiatry Res Neuroimaging. 2021;308:111238.

    Article  PubMed  Google Scholar 

  67. Leuchter AF, Cook IA, Jin Y, Phillips B. The relationship between brain oscillatory activity and therapeutic effectiveness of transcranial magnetic stimulation in the treatment of major depressive disorder. Front Hum Neurosci. 2013;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sakas DE, Panourias IG. Rostral cingulate gyrus: a putative target for deep brain stimulation in treatment-refractory depression. Med hypotheses. 2006;66:491–4.

    Article  PubMed  Google Scholar 

  69. Broadway JM, Holtzheimer PE, Hilimire MR, Parks NA, Devylder JE, Mayberg HS, et al. Frontal theta cordance predicts 6-month antidepressant response to subcallosal cingulate deep brain stimulation for treatment-resistant depression: a pilot study. Neuropsychopharmacology. 2012;37:1764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Northoff G, Hirjak D, Wolf RC, Magioncalda P, Martino M. Why is there symptom coupling of psychological and motor changes in psychomotor mechanisms? Insights from the brain’s topography. Mol Psychiatry. 2021;26:3669–71.

    Article  PubMed  Google Scholar 

  71. Northoff G, Wainio-Theberge S, Evers K. Is temporo-spatial dynamics the "common currency" of brain and mind? In quest of "Spatiotemporal Neuroscience". Phys life Rev. 2020;33:34–54.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Dick Swaab (Netherlands Institute for Neuroscience) for his academic advice on this work. There is no funding support for this research.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and G.N. designed the study. Y.H. and Z.T. contributed to the reference retrieval. Y.H. and G.N. made the figures. Y.H., Z.T., D.H., and G.N. wrote the manuscript.

Corresponding authors

Correspondence to Yu-Ting Hu or Georg Northoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YT., Tan, ZL., Hirjak, D. et al. Brain-wide changes in excitation-inhibition balance of major depressive disorder: a systematic review of topographic patterns of GABA- and glutamatergic alterations. Mol Psychiatry 28, 3257–3266 (2023). https://doi.org/10.1038/s41380-023-02193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02193-x

This article is cited by

Search

Quick links