Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adult-born neurons maintain hippocampal cholinergic inputs and support working memory during aging

Abstract

Adult neurogenesis is reduced during aging and impaired in disorders of stress, memory, and cognition though its normal function remains unclear. Moreover, a systems level understanding of how a small number of young hippocampal neurons could dramatically influence brain function is lacking. We examined whether adult neurogenesis sustains hippocampal connections cumulatively across the life span. Long-term suppression of neurogenesis as occurs during stress and aging resulted in an accelerated decline in hippocampal acetylcholine signaling and a slow and progressing emergence of profound working memory deficits. These deficits were accompanied by compensatory reorganization of cholinergic dentate gyrus inputs with increased cholinergic innervation to the ventral hippocampus and recruitment of ventrally projecting neurons by the dorsal projection. While increased cholinergic innervation was dysfunctional and corresponded to overall decreases in cholinergic levels and signaling, it could be recruited to correct the resulting memory dysfunction even in old animals. Our study demonstrates that hippocampal neurogenesis supports memory by maintaining the septohippocampal cholinergic circuit across the lifespan.  It also provides a systems level explanation for the progressive nature of memory deterioration during normal and pathological aging and indicates that the brain connectome is malleable by experience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased cholinergic hilar inputs in mice living with diminished neurogenesis.
Fig. 2: Reorganization of cholinergic septotemporal projection after a prolonged reduction in adult neurogenesis.
Fig. 3: A working memory deficit emerges in mice after a prolonged reduction of adult neurogenesis.
Fig. 4: Hippocampal acetylcholine release declines over time in mice without neurogenesis.
Fig. 5: Circuit-specific recruitment and systemic boosting of ACh reverses working memory deficits in NG− mice.
Fig. 6: Structural and functional reorganization of the septohippocampal circuit in NG− mice.

Similar content being viewed by others

References

  1. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. Plos One. 2010;5:e8809.

    PubMed  PubMed Central  Google Scholar 

  2. Kuhn H, Dickinson-Anson H, Gage F. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Praag H, van, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25:8680–5.

    PubMed  PubMed Central  Google Scholar 

  5. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behavior. Nature. 2011;476:458–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645–60.

    CAS  PubMed  Google Scholar 

  7. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325:210–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shors TJ. From stem cells to grandmother cells: how neurogenesis relates to learning and memory. Cell Stem Cell. 2008;3:253–8.

    CAS  PubMed  Google Scholar 

  9. Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE, et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 2011;13:195–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, et al. Targeting cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci. 2007;27:9817–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–9.

    CAS  PubMed  Google Scholar 

  12. Bleckert A, Zhang C, Turner MH, Koren D, Berson DM, Park SJH, et al. GABA release selectively regulates synapse development at distinct inputs on direction-selective retinal ganglion cells. Proc Natl Acad Sci. 2018;115:E12083–E12090.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yaeger CE, Ringach DL, Trachtenberg JT. Neuromodulatory control of localized dendritic spiking in critical period cortex. Nature. 2019;567:100–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Graybuck LT, Daigle TL, Sedeño-Cortés AE, Walker M, Kalmbach B, Lenz GH, et al. Enhancer viruses for combinatorial cell-subclass-specific labeling. Neuron. 2021;109:1449–1464.e13.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai Y, Nielsen BE, Boxer EE, Aoto J, Ford CP. Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments. Neuron. 2021;109:1137–1149.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Warner-Schmidt JL, Schmidt EF, Marshall JJ, Rubin AJ, Arango-Lievano M, Kaplitt MG, et al. Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proc Natl Acad Sci. 2012;109:11360–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gallo EF, Meszaros J, Sherman JD, Chohan MO, Teboul E, Choi CS, et al. Accumbens dopamine D2 receptors increase motivation by decreasing inhibitory transmission to the ventral pallidum. Nat Commun. 2018;9:1086.

    PubMed  PubMed Central  Google Scholar 

  18. Nelson AB, Hammack N, Yang CF, Shah NM, Seal RP, Kreitzer AC. Striatal cholinergic interneurons drive GABA release from dopamine terminals. Neuron. 2014;82:63–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Atallah HE, McCool AD, Howe MW, Graybiel AM. Neurons in the ventral striatum exhibit cell-type-specific representations of outcome during learning. Neuron. 2014;82:1145–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Virk MS, Sagi Y, Medrihan L, Leung J, Kaplitt MG, Greengard P. Opposing roles for serotonin in cholinergic neurons of the ventral and dorsal striatum. Proc Natl Acad Sci. 2016;113:734–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Medrihan L, Sagi Y, Inde Z, Krupa O, Daniels C, Peyrache A, et al. Initiation of behavioral response to antidepressants by cholecystokinin neurons of the dentate gyrus. Neuron. 2017;95:564–576.e4.

    CAS  PubMed  Google Scholar 

  22. Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA, Mucke L, et al. Fulminant Jejuno-Ileitis following ablation of enteric glia in adult transgenic mice. Cell. 1998;93:189–201.

    CAS  PubMed  Google Scholar 

  23. Garcia ADR, Doan NB, Imura T, Bush TG, Sofroniew MV. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci. 2004;7:1233–41.

    CAS  PubMed  Google Scholar 

  24. Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S, et al. Experience dictates stem cell fate in the adult hippocampus. Neuron. 2011;70:908–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kissa K, Mordelet E, Soudais C, Kremer EJ, Demeneix BA, Brûlet P, et al. In vivo neuronal tracing with GFP-TTC gene delivery. Mol Cell Neurosci. 2002;20:627–37.

    CAS  PubMed  Google Scholar 

  26. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76.

    CAS  PubMed  Google Scholar 

  27. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896–910.

    CAS  PubMed  Google Scholar 

  29. Chang Q, Gold PE. Impaired and spared cholinergic functions in the hippocampus after lesions of the medial septum/vertical limb of the diagonal band with 192 IgG‐saporin. Hippocampus. 2004;14:170–9.

    CAS  PubMed  Google Scholar 

  30. Dember WN, Fowler H. Spontaneous alternation behavior. Psychol Bull. 1958;55:412–28.

    CAS  PubMed  Google Scholar 

  31. Lennartz RC. The role of extramaze cues in spontaneous alternation in a plus-maze. Learn Behav. 2008;36:138–44.

    PubMed  Google Scholar 

  32. Avgustinovich DF, Lipina TV, Bondar NP, Alekseyenko OV, Kudryavtseva NN. Features of the genetically defined anxiety in mice. Behav Genet. 2000;30:101–9.

    CAS  PubMed  Google Scholar 

  33. Xie G, Harrison J, Clapcote SJ, Huang Y, Zhang J-Y, Wang L-Y, et al. A new Kv1.2 channelopathy underlying cerebellar ataxia*. J Biol Chem. 2010;285:32160–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jing M, Zhang P, Wang G, Feng J, Mesik L, Zeng J, et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat Biotechnol. 2018;36:726–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Amaral DG, Scharfman HE, Lavenex P. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res. 2007;163:3–790.

    PubMed  PubMed Central  Google Scholar 

  36. Tervo DGR, Hwang B-Y, Viswanathan S, Gaj T, Lavzin M, Ritola KD, et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron. 2016;92:372–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lavoie A, Liu B. Canine adenovirus 2: a natural choice for brain circuit dissection. Front Mol Neurosci. 2020;13:9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chatterjee S, Sullivan HA, MacLennan BJ, Xu R, Hou Y, Lavin TK, et al. Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci. 2018;21:638–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Berg DA, Belnoue L, Song H, Simon A. Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development. 2013;140:2548–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mohapel P, Leanza G, Kokaia M, Lindvall O. Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging. 2005;26:939–46.

    CAS  PubMed  Google Scholar 

  41. Bañuelos C, LaSarge CL, McQuail JA, Hartman JJ, Gilbert RJ, Ormerod BK, et al. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: relationship with spatial impairment. Neurobiol Aging. 2013;34:845–62.

    PubMed  Google Scholar 

  42. Stroessner-Johnson H, Rapp P, Amaral D. Cholinergic cell loss and hypertrophy in the medial septal nucleus of the behaviorally characterized aged rhesus monkey. J Neurosci. 1992;12:1936–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Colom LV, Castaneda MT, Reyna T, Hernandez S, Garrido‐sanabria E. Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse. 2005;58:151–64.

    CAS  PubMed  Google Scholar 

  44. Henderson Z, Lu CB, Janzsó G, Matto N, McKinley CE, Yanagawa Y, et al. Distribution and role of Kv3.1b in neurons in the medial septum diagonal band complex. Neuroscience. 2010;166:952–69.

    CAS  PubMed  Google Scholar 

  45. Yang YS, Hughes TE. Cre stoplight: a red/green fluorescent reporter of cre recombinase expression in living cells. Biotechniques. 2001;31:1036–41.

    CAS  PubMed  Google Scholar 

  46. Apostolova G, Loy B, Dorn R, Dechant G. The sympathetic neurotransmitter switch depends on the nuclear matrix protein Satb2. J Neurosci. 2010;30:16356–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC. Neurotransmitter switching in the adult brain regulates behavior. Science. 2013;340:449–53.

    CAS  PubMed  Google Scholar 

  48. Ruivo LMT-G, Mellor JR. Cholinergic modulation of hippocampal network function. Front Synaptic Neurosci. 2013;5:2.

    Google Scholar 

  49. Ohara S, Sato S, Tsutsui K-I, Witter MP, Iijima T. Organization of multisynaptic inputs to the dorsal and ventral dentate gyrus: retrograde trans-synaptic tracing with rabies virus vector in the rat. Plos One. 2013;8:e78928.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Li X, Yu H, Zhang B, Li L, Chen W, Yu Q, et al. Molecularly defined and functionally distinct cholinergic subnetworks. Neuron. 2022;110:3774–3788.e7.

    CAS  PubMed  Google Scholar 

  51. Zhao B, Zhong M, Jin K. Neurogenesis and neurodegenerative diseases in human. Panminerva Med. 2008;50:55–64.

    CAS  PubMed  Google Scholar 

  52. Nyakas C, Granic I, Halmy LG, Banerjee P, Luiten PGM. The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behav Brain Res. 2011;221:594–603.

    CAS  PubMed  Google Scholar 

  53. Terry AV, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharm Exp Ther. 2003;306:821–7.

    CAS  Google Scholar 

  54. Drew MR, Denny CA, Hen R. Arrest of adult hippocampal neurogenesis in mice impairs single- but not multiple-trial contextual fear conditioning. Behav Neurosci. 2010;124:446–54.

    PubMed  PubMed Central  Google Scholar 

  55. Wilson MA, Fadel JR. Cholinergic regulation of fear learning and extinction. J Neurosci Res. 2017;95:836–52.

    CAS  PubMed  Google Scholar 

  56. Lehmann O, Jeltsch H, Lazarus C, Tritschler L, Bertrand F, Cassel J-C. Combined 192 IgG-saporin and 5,7-dihydroxytryptamine lesions in the male rat brain A neurochemical and behavioral study. Pharm Biochem Be. 2002;72:899–912.

    CAS  Google Scholar 

  57. Andriambeloson E, Huyard B, Poiraud E, Wagner S. Methyllycaconitine‐ and scopolamine‐induced cognitive dysfunction: differential reversal effect by cognition‐enhancing drugs. Pharm Res Perspect. 2014;2:e00048.

    Google Scholar 

  58. Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat Methods. 2020;17:1139–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Neve RL. Overview of gene delivery into cells using HSV‐1‐based vectors. Curr Protoc Neurosci. 2012;61:4.12.1–7.

    Google Scholar 

  60. Zeng H. Mesoscale connectomics. Curr Opin Neurobiol. 2018;50:154–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Perry EK, Johnson M, Ekonomou A, Perry RH, Ballard C, Attems J. Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol Dis. 2012;47:155–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Stanfield BB, Cowan WM. The development of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol. 1979;185:423–59.

    CAS  PubMed  Google Scholar 

  63. Bergami M, Masserdotti G, Temprana SG, Motori E, Eriksson TM, Göbel J, et al. A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron. 2015;85:710–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Yulong Li for sharing AAV-GRAB-ACh3.0; Joshua Gordon and Steven Siegelbaum for critical reading of the manuscript; and members of the ADL and Gordon labs for helpful insights. GSK was supported by a Canadian Institutes of Health Research Postdoctoral Fellowship. This work was supported by MH115215, MH106809, NARSAD young investigator award, and Columbia University Irving Scholar and Translational Therapeutics Accelerator awards (AD), MH091427 (EDL), and NS085502 (LMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. David Leonardo or Alex Dranovsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirshenbaum, G.S., Chang, CY., Bompolaki, M. et al. Adult-born neurons maintain hippocampal cholinergic inputs and support working memory during aging. Mol Psychiatry 28, 5337–5349 (2023). https://doi.org/10.1038/s41380-023-02167-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02167-z

Search

Quick links