Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytomegalovirus antibodies are associated with mood disorders, suicide, markers of neuroinflammation, and microglia activation in postmortem brain samples

Abstract

Cytomegalovirus (CMV) is a common, neurotrophic herpesvirus that can be reactivated by inflammation and cause central nervous system disease. We hypothesize that CMV may contribute to the neuroinflammation that underlies some psychiatric disorders by (1) exacerbating inflammation through the induction of anti-viral immune responses, and (2) translating peripheral inflammation into neuroinflammation. We investigated whether the presence of anti-CMV antibodies in blood were associated with mental illness, suicide, neuroinflammation, and microglial density in the dorsolateral prefrontal cortex (DLPFC) in postmortem samples. Data (n= 114 with schizophrenia; n= 78 with bipolar disorder; n= 87 with depression; n= 85 controls) were obtained from the Stanley Medical Research Institute. DLPFC gene expression data from a subset of 82 samples were categorized into “high” (n= 30), and “low” (n= 52) inflammation groups based on a recursive two-step cluster analysis using expression data for four inflammation-related genes. Measurements of the ratio of non-ramified to ramified microglia, a proxy of microglial activation, were available for a subset of 49 samples. All analyses controlled for age, sex, and ethnicity, as well as postmortem interval, and pH for gene expression and microglial outcomes. CMV seropositivity significantly increased the odds of a mood disorder diagnosis (bipolar disorder: OR = 2.45; major depression: OR = 3.70) and among the psychiatric samples, of suicide (OR = 2.09). Samples in the upper tercile of anti-CMV antibody titers were more likely to be members of the “high” inflammation group (OR = 4.41, an effect driven by schizophrenia and bipolar disorder samples). CMV positive samples also showed an increased ratio of non-ramified to ramified microglia in layer I of the DLPFC (Cohen’s d = 0.81) as well as a non-significant increase in this ratio for the DLPFC as a whole (d = 0.56). The results raise the possibility that the reactivation of CMV contributes to the neuroinflammation that underlies some cases of psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample inclusion and exclusion flowchart.
Fig. 2: Associations between CMV infection and psychiatric disorders.
Fig. 3: Associations between CMV infection and suicide status.
Fig. 4: Associations between CMV infection and microglia activation.

Similar content being viewed by others

Data availability

Data used in current study are available at https://stanleyresearch.org. The statistical analysis R scripts used for current study are available upon request to the corresponding author.

References

  1. Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol. 2021;19:759–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Griffiths P, Baraniak I, Reeves M. The pathogenesis of human cytomegalovirus. J Pathol. 2015;235:288–97.

    CAS  PubMed  Google Scholar 

  3. Pariante CM, Carpiniello B, Orru MG, Sitzia R, Piras A, Farci AM, et al. Chronic caregiving stress alters peripheral blood immune parameters: the role of age and severity of stress. Psychother Psychosom. 1997;66:199–207.

    CAS  PubMed  Google Scholar 

  4. Prosch S, Wendt CE, Reinke P, Priemer C, Oppert M, Kruger DH, et al. A novel link between stress and human cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation. Virology. 2000;272:357–65.

    CAS  PubMed  Google Scholar 

  5. Docke WD, Prosch S, Fietze E, Kimel V, Zuckermann H, Klug C, et al. Cytomegalovirus reactivation and tumour necrosis factor. Lancet. 1994;343:268–9.

    CAS  PubMed  Google Scholar 

  6. Stein J, Volk HD, Liebenthal C, Kruger DH, Prosch S. Tumour necrosis factor alpha stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J Gen Virol. 1993;74:2333–8.

    CAS  PubMed  Google Scholar 

  7. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pape K, Tamouza R, Leboyer M, Zipp F. Immunoneuropsychiatry - novel perspectives on brain disorders. Nat Rev Neurol. 2019;15:317–28.

    PubMed  Google Scholar 

  9. Fillman SG, Sinclair D, Fung SJ, Webster MJ, Shannon Weickert C. Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder. Transl Psychiatry. 2014;4:e365.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18:206–14.

    CAS  PubMed  Google Scholar 

  11. Zhu Y, Owens SJ, Murphy CE, Ajulu K, Rothmond D, Purves-Tyson T, et al. Inflammation-related transcripts define "high" and "low" subgroups of individuals with schizophrenia and bipolar disorder in the midbrain. Brain Behav Immun. 2022;105:149–59.

    CAS  PubMed  Google Scholar 

  12. Vasilieva E, Gianella S, Freeman ML. Novel strategies to combat CMV-related cardiovascular disease. Pathog Immun. 2020;5:240–74.

    PubMed  PubMed Central  Google Scholar 

  13. Schnittman SR, Hunt PW. Clinical consequences of asymptomatic cytomegalovirus in treated human immunodeficency virus infection. Curr Opin HIV AIDS. 2021;16:168–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Savitz J, Yolken RH. Therapeutic implications of the microbial hypothesis of mental illness. Curr Top Behav Neurosci. 2023;61:315–51.

  15. Ford BN, Savitz J. Effect of cytomegalovirus on the immune system: implications for aging and mental health. Curr Top Behav Neurosci. 2023;61:181–214.

  16. Zheng H, Savitz J. Effect of cytomegalovirus infection on the central nervous system: implications for psychiatric disorders. Curr Top Behav Neurosci. 2023;61:215–41.

  17. Simanek AM, Zheng C, Yolken R, Haan M, Aiello AE. A longitudinal study of the association between persistent pathogens and incident depression among older U.S. Latinos. J Gerontol A Biol Sci Med Sci. 2019;74:634–41.

    CAS  PubMed  Google Scholar 

  18. Burgdorf KS, Trabjerg BB, Pedersen MG, Nissen J, Banasik K, Pedersen OB, et al. Large-scale study of Toxoplasma and Cytomegalovirus shows an association between infection and serious psychiatric disorders. Brain Behav Immun. 2019;79:152–8.

    PubMed  Google Scholar 

  19. Dalman C, Allebeck P, Gunnell D, Harrison G, Kristensson K, Lewis G, et al. Infections in the CNS during childhood and the risk of subsequent psychotic illness: a cohort study of more than one million Swedish subjects. Am J Psychiatry. 2008;165:59–65.

    PubMed  Google Scholar 

  20. Torrey EF, Leweke MF, Schwarz MJ, Mueller N, Bachmann S, Schroeder J, et al. Cytomegalovirus and schizophrenia. CNS Drugs. 2006;20:879–85.

    PubMed  Google Scholar 

  21. Zheng H, Ford BN, Bergamino M, Kuplicki R, Tulsa I, Hunt PW, et al. A hidden menace? Cytomegalovirus infection is associated with reduced cortical gray matter volume in major depressive disorder. Mol Psychiatry. 2021;26:4234–44.

    CAS  PubMed  Google Scholar 

  22. Zheng H, Bergamino M, Ford BN, Kuplicki R, Yeh FC, Bodurka J, et al. Replicable association between human cytomegalovirus infection and reduced white matter fractional anisotropy in major depressive disorder. Neuropsychopharmacology. 2021;46:928–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng H, Ford BN, Kuplicki R, Burrows K, Hunt PW, Bodurka J, et al. Association between cytomegalovirus infection, reduced gray matter volume, and resting-state functional hypoconnectivity in major depressive disorder: a replication and extension. Transl Psychiatry. 2021;11:464.

    PubMed  PubMed Central  Google Scholar 

  24. Houenou J, d’Albis MA, Daban C, Hamdani N, Delavest M, Lepine JP, et al. Cytomegalovirus seropositivity and serointensity are associated with hippocampal volume and verbal memory in schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:142–8.

    CAS  PubMed  Google Scholar 

  25. Andreou D, Jorgensen KN, Nerland S, Engen K, Yolken RH, Andreassen OA, et al. Cytomegalovirus infection associated with smaller dentate gyrus in men with severe mental illness. Brain Behav Immun. 2021;96:54–62.

    CAS  PubMed  Google Scholar 

  26. Andreou D, Jorgensen KN, Nerland S, Yolken RH, Haukvik UK, Andreassen OA. et al. Cytomegalovirus infection associated with smaller total cortical surface area in schizophrenia spectrum disorders. Schizophr Bull. 2022;48:1164–73.

  27. Lokensgard JR, Cheeran MC, Hu S, Gekker G, Peterson PK. Glial cell responses to herpesvirus infections: role in defense and immunopathogenesis. J Infect Dis. 2002;186:S171–79.

    PubMed  Google Scholar 

  28. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH. The stanley foundation brain collection and neuropathology consortium. Schizophr Res. 2000;44:151–5.

    CAS  PubMed  Google Scholar 

  29. Weickert CS, Sheedy D, Rothmond DA, Dedova I, Fung S, Garrick T, et al. Selection of reference gene expression in a schizophrenia brain cohort. Aust N. Z J Psychiatry. 2010;44:59–70.

    PubMed  PubMed Central  Google Scholar 

  30. Hercher C, Chopra V, Beasley CL. Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder. J Psychiatry Neurosci. 2014;39:376–85.

    PubMed  PubMed Central  Google Scholar 

  31. Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb Cortex. 1995;5:307–22.

    CAS  PubMed  Google Scholar 

  32. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–59.

    CAS  PubMed  Google Scholar 

  33. Hagihara H, Catts VS, Katayama Y, Shoji H, Takagi T, Huang FL, et al. Decreased Brain pH as a shared endophenotype of psychiatric disorders. Neuropsychopharmacology. 2018;43:459–68.

    CAS  PubMed  Google Scholar 

  34. Tyrtyshnaia AA, Lysenko LV, Madamba F, Manzhulo IV, Khotimchenko MY, Kleschevnikov AM. Acute neuroinflammation provokes intracellular acidification in mouse hippocampus. J Neuroinflammation. 2016;13:283.

    PubMed  PubMed Central  Google Scholar 

  35. Appels A, Bar FW, Bar J, Bruggeman C, de Baets M. Inflammation, depressive symptomtology, and coronary artery disease. Psychosom Med. 2000;62:601–5.

    CAS  PubMed  Google Scholar 

  36. Rector JL, Dowd JB, Loerbroks A, Burns VE, Moss PA, Jarczok MN, et al. Consistent associations between measures of psychological stress and CMV antibody levels in a large occupational sample. Brain Behav Immun. 2014;38:133–41.

    PubMed  Google Scholar 

  37. Phillips AC, Carroll D, Khan N, Moss P. Cytomegalovirus is associated with depression and anxiety in older adults. Brain Behav Immun. 2008;22:52–55.

    CAS  PubMed  Google Scholar 

  38. Trzonkowski P, Mysliwska J, Godlewska B, Szmit E, Lukaszuk K, Wieckiewicz J, et al. Immune consequences of the spontaneous pro-inflammatory status in depressed elderly patients. Brain Behav Immun. 2004;18:135–48.

    CAS  PubMed  Google Scholar 

  39. Miller GE, Freedland KE, Duntley S, Carney RM. Relation of depressive symptoms to C-reactive protein and pathogen burden (cytomegalovirus, herpes simplex virus, Epstein-Barr virus) in patients with earlier acute coronary syndromes. Am J Cardiol. 2005;95:317–21.

    CAS  PubMed  Google Scholar 

  40. Dickerson F, Wilcox HC, Adamos M, Katsafanas E, Khushalani S, Origoni A, et al. Suicide attempts and markers of immune response in individuals with serious mental illness. J Psychiatr Res. 2017;87:37–43.

    PubMed  Google Scholar 

  41. Simanek AM, Cheng C, Yolken R, Uddin M, Galea S, Aiello AE. Herpesviruses, inflammatory markers and incident depression in a longitudinal study of Detroit residents. Psychoneuroendocrinology. 2014;50:139–48.

    PubMed  PubMed Central  Google Scholar 

  42. Dickerson F, Origoni A, Schweinfurth LAB, Stallings C, Savage CLG, Sweeney K, et al. Clinical and serological predictors of suicide in schizophrenia and major mood disorders. J Nerv Ment Dis. 2018;206:173–8.

    PubMed  Google Scholar 

  43. Jaremka LM, Fagundes CP, Glaser R, Bennett JM, Malarkey WB, Kiecolt-Glaser JK. Loneliness predicts pain, depression, and fatigue: understanding the role of immune dysregulation. Psychoneuroendocrinology. 2013;38:1310–7.

    CAS  PubMed  Google Scholar 

  44. Lycke E, Norrby R, Roos BE. A serological study on mentally ill patients with particular reference to the prevalence of herpes virus infections. Br J Psychiatry. 1974;124:273–9.

    CAS  PubMed  Google Scholar 

  45. Coryell W, Wilcox H, Evans SJ, Pandey GN, Jones-Brando L, Dickerson F, et al. Latent infection, inflammatory markers and suicide attempt history in depressive disorders. J Affect Disord. 2020;270:97–101.

    CAS  PubMed  Google Scholar 

  46. Gale SD, Berrett AN, Erickson LD, Brown BL, Hedges DW. Association between virus exposure and depression in US adults. Psychiatry Res. 2018;261:73–79.

    PubMed  Google Scholar 

  47. Frye MA, Coombes BJ, McElroy SL, Jones-Brando L, Bond DJ, Veldic M, et al. Association of Cytomegalovirus and Toxoplasma gondii Antibody Titers With Bipolar Disorder. JAMA Psychiatry. 2019;76:1285–93.

    PubMed  PubMed Central  Google Scholar 

  48. Iglesias-Escudero M, Moro-García MA, Marcos-Fernández R, García-Torre A, Álvarez-Argüelles ME, Suárez-Fernández ML, et al. Levels of anti-CMV antibodies are modulated by the frequency and intensity of virus reactivations in kidney transplant patients. PLoS One. 2018;13:e0194789.

    PubMed  PubMed Central  Google Scholar 

  49. Albrecht P, Torrey EF, Boone E, Hicks JT, Daniel N. Raised cytomegalovirus-antibody level in cerebrospinal fluid of schizophrenic patients. Lancet. 1980;2:769–72.

    CAS  PubMed  Google Scholar 

  50. Torrey EF, Yolken RH, Winfrey CJ. Cytomegalovirus antibody in cerebrospinal fluid of schizophrenic patients detected by enzyme immunoassay. Science. 1982;216:892–4.

    CAS  PubMed  Google Scholar 

  51. Kaufmann CA, Weinberger DR, Yolken RH, Torrey EF, Pofkin SG. Viruses and schizophrenia. Lancet. 1983;2:1136–7.

    CAS  PubMed  Google Scholar 

  52. Moya Lacasa C, Rayner T, Hagen MM, Yang W, Marks K, Kirkpatrick B. Anti-cyomegalovirus antibodies in schizophrenia and related disorders: A systematic review and meta-analysis. Schizophr Res. 2021;228:322–3.

    CAS  PubMed  Google Scholar 

  53. Arias I, Sorlozano A, Villegas E, de Dios Luna J, McKenney K, Cervilla J, et al. Infectious agents associated with schizophrenia: a meta-analysis. Schizophr Res. 2012;136:128–36.

    PubMed  Google Scholar 

  54. Khandaker GM, Zimbron J, Lewis G, Jones PB. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med. 2013;43:239–57.

    CAS  PubMed  Google Scholar 

  55. Zhang Y, Traskman-Bendz L, Janelidze S, Langenberg P, Saleh A, Constantine N, et al. Toxoplasma gondii immunoglobulin G antibodies and nonfatal suicidal self-directed violence. J Clin Psychiatry. 2012;73:1069–76.

    CAS  PubMed  Google Scholar 

  56. Lindgren M, Holm M, Markkula N, Harkanen T, Dickerson F, Yolken RH, et al. Exposure to common infections and risk of suicide and self-harm: a longitudinal general population study. Eur Arch Psychiatry Clin Neurosci. 2020;270:829–39.

    PubMed  PubMed Central  Google Scholar 

  57. Torres-Platas SG, Comeau S, Rachalski A, Bo GD, Cruceanu C, Turecki G, et al. Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation. 2014;11:12.

    PubMed  PubMed Central  Google Scholar 

  58. Mechawar N, Savitz J. Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry. 2016;6:e946.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheeran MC, Hu S, Yager SL, Gekker G, Peterson PK, Lokensgard JR. Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J Neurovirol. 2001;7:135–47.

    CAS  PubMed  Google Scholar 

  60. Zhou YP, Mei MJ, Wang XZ, Huang SN, Chen L, Zhang M, et al. A congenital CMV infection model for follow-up studies of neurodevelopmental disorders, neuroimaging abnormalities, and treatment. JCI Insight. 2022;7:e152551.

  61. Kvestak D, Juranic Lisnic V, Lisnic B, Tomac J, Golemac M, Brizic I, et al. NK/ILC1 cells mediate neuroinflammation and brain pathology following congenital CMV infection. J Exp Med. 2021;218:e20201503.

  62. Cloarec R, Bauer S, Luche H, Buhler E, Pallesi-Pocachard E, Salmi M, et al. Cytomegalovirus infection of the rat developing brain in utero prominently targets immune cells and promotes early microglial activation. PLoS One. 2016;11:e0160176.

    PubMed  PubMed Central  Google Scholar 

  63. Grassi MP, Clerici F, Perin C, D’Arminio Monforte A, Vago L, Borella M, et al. Microglial nodular encephalitis and ventriculoencephalitis due to cytomegalovirus infection in patients with AIDS: two distinct clinical patterns. Clin Infect Dis : Off Publ Infect Dis Soc Am. 1998;27:504–8.

    CAS  Google Scholar 

  64. Bell JE. The neuropathology of adult HIV infection. Rev Neurol (Paris). 1998;154:816–29.

    CAS  PubMed  Google Scholar 

  65. Rollag H, Asberg A, Ueland T, Hartmann A, Jardine AG, Humar A, et al. Treatment of cytomegalovirus disease in solid organ transplant recipients: markers of inflammation as predictors of outcome. Transplantation. 2012;94:1060–5.

    CAS  PubMed  Google Scholar 

  66. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. Jama. 2008;300:413–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Alanio C, Verma A, Mathew D, Gouma S, Liang G, Dunn T, et al. Cytomegalovirus latent infection is associated with an increased risk of COVID-19-related hospitalization. J Infect Dis. 2022;226:463–73.

  68. Weber S, Kehl V, Erber J, Wagner KI, Jetzlsperger AM, Burrell T, et al. CMV seropositivity is a potential novel risk factor for severe COVID-19 in non-geriatric patients. PLoS One. 2022;17:e0268530.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hunt PW, Martin JN, Sinclair E, Epling L, Teague J, Jacobson MA, et al. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis. 2011;203:1474–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu XF, Jie C, Zhang Z, Yan S, Wang JJ, Wang X, et al. Transplant-induced reactivation of murine cytomegalovirus immediate early gene expression is associated with recruitment of NF-kappaB and AP-1 to the major immediate early promoter. J Gen Virol. 2016;97:941–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJ, Furman D, et al. Variation in the human immune system is largely driven by non-heritable influences. Cell. 2015;160:37–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Murphy CE, Lawther AJ, Webster MJ, Asai M, Kondo Y, Matsumoto M, et al. Nuclear factor kappa B activation appears weaker in schizophrenia patients with high brain cytokines than in non-schizophrenic controls with high brain cytokines. J Neuroinflammation. 2020;17:215.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Coen DM, Schaffer PA. Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat Rev Drug Discov. 2003;2:278–88.

    CAS  PubMed  Google Scholar 

  74. Marty FM, Ljungman P, Chemaly RF, Maertens J, Dadwal SS, Duarte RF, et al. Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation. N. Engl J Med. 2017;377:2433–44.

    CAS  PubMed  Google Scholar 

  75. Marty FM, Ljungman P, Papanicolaou GA, Winston DJ, Chemaly RF, Strasfeld L, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis. 2011;11:284–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The William K. Warren Foundation, the National Institute of Mental Health (R01MH123652), and the National Institute of General Medical Sciences (P20GM121312).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HZ, MJW, MPP, RHY, and JS; data collection, MJW, CSW, CLB, and RHY; methodology and data analysis, HZ, MJW, CSW, CLB, and RHY; manuscript writing—original draft preparation, HZ, and JS; manuscript writing—review and editing, HZ, MJW, CSW, CLB, MPP, RHY, and JS; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Haixia Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Webster, M.J., Weickert, C.S. et al. Cytomegalovirus antibodies are associated with mood disorders, suicide, markers of neuroinflammation, and microglia activation in postmortem brain samples. Mol Psychiatry 28, 5282–5292 (2023). https://doi.org/10.1038/s41380-023-02162-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02162-4

This article is cited by

Search

Quick links