Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alternative splicing in mouse brains affected by psychological stress is enriched in the signaling, neural transmission and blood-brain barrier pathways

Abstract

Psychological stress increases the risk of major psychiatric disorders. Psychological stress on mice was reported to induce differential gene expression (DEG) in mice brain regions. Alternative splicing is a fundamental aspect of gene expression and has been associated with psychiatric disorders but has not been investigated in the stressed brain yet. This study investigated changes in gene expression and splicing under psychological stress, the related pathways, and possible relationship with psychiatric disorders. RNA-seq raw data of 164 mouse brain samples from 3 independent datasets with stressors including chronic social defeat stress (CSDS), early life stress (ELS), and two-hit stress of combined CSDS and ELS were collected. There were more changes in splicing than in gene expression in the ventral hippocampus and medial prefrontal cortex, but stress-induced changes of individual genes by differential splicing and differential expression could not be replicated. In contrast, pathway analyses produced robust findings: stress-induced differentially spliced genes (DSGs) were reproducibly enriched in neural transmission and blood-brain barrier systems, and DEGs were reproducibly enriched in stress response-related functions. The hub genes of DSG-related PPI networks were enriched in synaptic functions. The corresponding human homologs of stress-induced DSGs were robustly enriched in AD-related DSGs as well as BD and SCZ in GWAS. These results suggested that stress-induced DSGs from different datasets belong to the same biological system throughout the stress response process, resulting in consistent stress response effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the study.
Fig. 2: Top enriched biological processes for DSGs and the enriched KEGG pathways for DSGs.
Fig. 3: The hub genes in DSG-related PPI networks and their functional annotations.
Fig. 4: Functional annotations for hub genes in DEG-related PPI networks.
Fig. 5: Enrichment of DSGs in psychiatric disorder-related candidate genes and GWAS genes.
Fig. 6: The enrichment of CSDS-induced DSGs in tight junction pathway from different datasets in vHIP.

Similar content being viewed by others

Code availability

The code of this work is provided at https://github.com/Fefe-W/Psychological-stress.

References

  1. Ramot A, Jiang Z, Tian JB, Nahum T, Kuperman Y, Justice N, et al. Hypothalamic CRFR1 is essential for HPA axis regulation following chronic stress. Nat Neurosci. 2017;20:385–8.

    CAS  PubMed  Google Scholar 

  2. Walker E, Mittal V, Tessner K. Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annu Rev Clin Psychol. 2008;4:189–216.

    PubMed  Google Scholar 

  3. Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20:32–47.

    CAS  PubMed  Google Scholar 

  4. Korosi A, Shanabrough M, McClelland S, Liu ZW, Borok E, Gao XB, et al. Early-life experience reduces excitation to stress-responsive hypothalamic neurons and reprograms the expression of corticotropin-releasing hormone. J Neurosci. 2010;30:703–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Marmigère F, Givalois L, Rage F, Arancibia S, Tapia-Arancibia L. Rapid induction of BDNF expression in the hippocampus during immobilization stress challenge in adult rats. Hippocampus 2003;13:646–55.

    PubMed  Google Scholar 

  6. Pacák K, Palkovits M. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev. 2001;22:502–48.

    PubMed  Google Scholar 

  7. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24:151–80.

    CAS  PubMed  Google Scholar 

  8. Figueiredo HF, Bodie BL, Tauchi M, Dolgas CM, Herman JP. Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 2003;144:5249–58.

    CAS  PubMed  Google Scholar 

  9. Dayas CV, Buller KM, Crane JW, Xu Y, Day TA. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci. 2001;14:1143–52.

    CAS  PubMed  Google Scholar 

  10. Radley JJ, Arias CM, Sawchenko PE. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci. 2006;26:12967–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ulrich-Lai YM, Christiansen AM, Ostrander MM, Jones AA, Jones KR, Choi DC, et al. Pleasurable behaviors reduce stress via brain reward pathways. Proc Natl Acad Sci USA. 2010;107:20529–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Baik JH. Stress and the dopaminergic reward system. Exp Mol Med. 2020;52:1879–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee T, Jarome T, Li SJ, Kim JJ, Helmstetter FJ. Chronic stress selectively reduces hippocampal volume in rats: a longitudinal magnetic resonance imaging study. Neuroreport 2009;20:1554–8.

    PubMed  PubMed Central  Google Scholar 

  14. Ohl F, Michaelis T, Vollmann-Honsdorf GK, Kirschbaum C, Fuchs E. Effect of chronic psychosocial stress and long-term cortisol treatment on hippocampus-mediated memory and hippocampal volume: a pilot-study in tree shrews. Psychoneuroendocrinology. 2000;25:357–63.

    CAS  PubMed  Google Scholar 

  15. Nikolova YS, Misquitta KA, Rocco BR, Prevot TD, Knodt AR, Ellegood J, et al. Shifting priorities: highly conserved behavioral and brain network adaptations to chronic stress across species. Transl Psychiatry. 2018;8:26.

    PubMed  PubMed Central  Google Scholar 

  16. Anacker C, Scholz J, O’Donnell KJ, Allemang-Grand R, Diorio J, Bagot RC, et al. Neuroanatomic Differences Associated With Stress Susceptibility and Resilience. Biol Psychiatry. 2016;79:840–9.

    PubMed  Google Scholar 

  17. McEwen BS. Early life influences on life-long patterns of behavior and health. Ment Retard Dev Disabil Res Rev. 2003;9:149–54.

    PubMed  Google Scholar 

  18. McEwen BS. Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci. 2004;1032:1–7.

    PubMed  Google Scholar 

  19. Peña CJ, Smith M, Ramakrishnan A, Cates HM, Bagot RC, Kronman HG, et al. Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nat Commun. 2019;10:5098.

    PubMed  PubMed Central  Google Scholar 

  20. Bagot RC, Cates HM, Purushothaman I, Lorsch ZS, Walker DM, Wang J, et al. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility. Neuron 2016;90:969–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Myin-Germeys I, Peeters F, Havermans R, Nicolson NA, DeVries MW, Delespaul P, et al. Emotional reactivity to daily life stress in psychosis and affective disorder: an experience sampling study. Acta Psychiatr Scand. 2003;107:124–31.

    CAS  PubMed  Google Scholar 

  22. Varese F, Smeets F, Drukker M, Lieverse R, Lataster T, Viechtbauer W, et al. Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophr Bull. 2012;38:661–71.

    PubMed  PubMed Central  Google Scholar 

  23. Croft J, Heron J, Teufel C, Cannon M, Wolke D, Thompson A, et al. Association of Trauma Type, Age of Exposure, and Frequency in Childhood and Adolescence With Psychotic Experiences in Early Adulthood. JAMA Psychiatry. 2019;76:79–86.

    PubMed  Google Scholar 

  24. Laine MA, Trontti K, Misiewicz Z, Sokolowska E, Kulesskaya N, Heikkinen A, et al. Genetic Control of Myelin Plasticity after Chronic Psychosocial Stress. eNeuro 2018;5:ENEURO.0166–18.

    PubMed  Google Scholar 

  25. Wang W, Guo H, Zhang SX, Li J, Cheng K, Bai SJ, et al. Targeted Metabolomic Pathway Analysis and Validation Revealed Glutamatergic Disorder in the Prefrontal Cortex among the Chronic Social Defeat Stress Mice Model of Depression. J Proteome Res. 2016;15:3784–92.

    CAS  PubMed  Google Scholar 

  26. Cohen OS, Mccoy SY, Middleton FA, Bialosuknia S, Zhang-James Y, Liu L, et al. Transcriptomic analysis of postmortem brain identifies dysregulated splicing events in novel candidate genes for schizophrenia. Schizophr Res. 2012;142:188–99.

    PubMed  PubMed Central  Google Scholar 

  27. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008;456:470–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–5.

    CAS  PubMed  Google Scholar 

  29. Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, et al. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci. 2010;30:15007–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nair A, Vadodaria KC, Banerjee SB, Benekareddy M, Dias BG, Duman RS, et al. Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus. Neuropsychopharmacology 2007;32:1504–19.

    CAS  PubMed  Google Scholar 

  31. Raj T, Li YI, Wong G, Humphrey J, Wang M, Ramdhani S, et al. Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat Genet. 2018;50:1584–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018;362:eaat8127.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Oldmeadow C, Mossman D, Evans TJ, Holliday EG, Tooney PA, Cairns MJ, et al. Combined analysis of exon splicing and genome wide polymorphism data predict schizophrenia risk loci. J Psychiatr Res. 2014;52:44–9.

    PubMed  Google Scholar 

  34. Editorial. Replicating scientific results is tough—but essential. Nature. 2021;600:359–60.

  35. Peña CJ, Kronman HG, Walker DM, Cates HM, Bagot RC, Purushothaman I, et al. Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science 2017;356:1185–8.

    PubMed  PubMed Central  Google Scholar 

  36. Marrocco J, Gray JD, Kogan JF, Einhorn NR, O’Cinneide EM, Rubin TG, et al. Early Life Stress Restricts Translational Reactivity in CA3 Neurons Associated With Altered Stress Responses in Adulthood. Front Behav Neurosci. 2019;13:157.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

    CAS  PubMed  Google Scholar 

  39. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078–9.

    PubMed  PubMed Central  Google Scholar 

  40. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 2012;28:2184–5.

    CAS  PubMed  Google Scholar 

  41. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012;28:882–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat Genet. 2018;50:151–8.

    CAS  PubMed  Google Scholar 

  43. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.

    CAS  PubMed  Google Scholar 

  45. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8:S11.

    PubMed  PubMed Central  Google Scholar 

  46. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51:404–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022;604:502–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11:e1004219.

    PubMed  PubMed Central  Google Scholar 

  52. Li J, Cai T, Jiang Y, Chen H, He X, Chen C, et al. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol Psychiatry. 2016;21:290–7.

    PubMed  Google Scholar 

  53. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Basu SN, Kollu R, Banerjee-Basu S. AutDB: a gene reference resource for autism research. Nucleic Acids Res. 2009;37:D832–6.

    CAS  PubMed  Google Scholar 

  55. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared Molecular Neuropathology Across Major Psychiatric Disorders Parallels Polygenic Overlap. Science 2018;359:693–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008;455:237–41.

    Google Scholar 

  57. Ng MY, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry. 2009;14:774–85.

    CAS  PubMed  Google Scholar 

  58. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet. 2003;73:34–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet. 2008;40:827–34.

    CAS  PubMed  Google Scholar 

  60. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry. 2012;17:887–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. He X, Fuller CK, Song Y, Meng Q, Zhang B, Yang X, et al. Sherlock: detecting gene-disease associations by matching patterns of expression QTL and GWAS. Am J Hum Genet. 2013;92:667–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Luo X, Huang L, Han L, Luo Z, Hu F, Tieu R, et al. Systematic prioritization and integrative analysis of copy number variations in schizophrenia reveal key schizophrenia susceptibility genes. Schizophr Bull. 2014;40:1285–99.

    PubMed  PubMed Central  Google Scholar 

  63. Yamanaka Y, Motoshima H, Uchida K. Hypothalamic-pituitary-adrenal axis differentially responses to morning and evening psychological stress in healthy subjects. Neuropsychopharmacol Rep. 2019;39:41–7.

    CAS  PubMed  Google Scholar 

  64. Hosoi T, Kimura H, Yamawaki Y, Mori K, Ozawa K. Immobilization stress induces XBP1 splicing in the mouse brain. Biochem Biophys Res Commun. 2019;508:516–20.

    CAS  PubMed  Google Scholar 

  65. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Skultétyová I, Tokarev D, Jezová D. Stress-induced increase in blood-brain barrier permeability in control and monosodium glutamate-treated rats. Brain Res Bull. 1998;45:175–8.

    PubMed  Google Scholar 

  67. Welcome MO, Mastorakis NE. Stress-induced blood brain barrier disruption: Molecular mechanisms and signaling pathways. Pharm Res. 2020;157:104769.

    CAS  Google Scholar 

  68. Oei N, Both S, van Heemst D, van der Grond J. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli. Psychoneuroendocrinology 2014;39:111–20.

    CAS  PubMed  Google Scholar 

  69. Arias-Carrión O, Stamelou M, Murillo-Rodríguez E, Menéndez-González M, Pöppel E. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3:24.

    PubMed  PubMed Central  Google Scholar 

  70. Geng S, Yang L, Cheng F, Zhang Z, Li J, Liu W, et al. Gut Microbiota Are Associated With Psychological Stress-Induced Defections in Intestinal and Blood-Brain Barriers. Front Microbiol. 2020;10:3067.

    PubMed  PubMed Central  Google Scholar 

  71. Sántha P, Veszelka S, Hoyk Z, Mészáros M, Walter FR, Tóth AE, et al. Restraint Stress-Induced Morphological Changes at the Blood-Brain Barrier in Adult Rats. Front Mol Neurosci. 2016;8:88.

    PubMed  PubMed Central  Google Scholar 

  72. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20:1752–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Coates CJ, Decker H. Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Cell Mol Life Sci. 2017;74:293–317.

    CAS  PubMed  Google Scholar 

  74. Awadia S, Huq F, Arnold TR, Goicoechea SM, Sun YJ, Hou T, et al. SGEF forms a complex with Scribble and Dlg1 and regulates epithelial junctions and contractility. J Cell Biol. 2019;218:2699–725.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chai K, Kitamura K, McCann A, Wu XR. The epithelium-molecular landscaping for an interactive barrier. J Biomed Biotechnol. 2010;2010:870506.

    PubMed  Google Scholar 

  76. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010;468:562–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature 2010;468:557–61.

    CAS  PubMed  Google Scholar 

  78. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010;68:409–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fiala M, Liu QN, Sayre J, Pop V, Brahmandam V, Graves MC, et al. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood-brain barrier. Eur J Clin Investig. 2002;32:360–71.

    CAS  Google Scholar 

  80. Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med. 2009;13:2911–25.

    CAS  PubMed  Google Scholar 

  81. Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013;23:303–10.

    PubMed  Google Scholar 

  82. Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci. 2022;23:3861.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 82022024, 31970572, 31871276), the National Key R&D Project of China (Grants No. 2016YFC1306000 and 2017YFC0908701), Innovation-driven Project of Central South University (Grant Nos. 2020CX003), The science and technology innovation Program of Hunan Province (2021RC4018, 2021RC5027). NIH grants U01 MH122591, 1U01MH116489, 1R01MH110920, R01MH126459. This work was supported in part by the High Performance Computing Center of Central South University. We thank Richard F. Kopp for revising.

Author information

Authors and Affiliations

Authors

Contributions

CC and CL designed the study and interpreted the results. FW, XY, and ZR collected the datasets. FW preprocessed the datasets and performed all the analyses in this study. All authors read and approved the final version.

Corresponding authors

Correspondence to Chao Chen or Chunyu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yang, X., Ren, Z. et al. Alternative splicing in mouse brains affected by psychological stress is enriched in the signaling, neural transmission and blood-brain barrier pathways. Mol Psychiatry 28, 4707–4718 (2023). https://doi.org/10.1038/s41380-023-02103-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02103-1

Search

Quick links