Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regional white matter and gray matter damage and cognitive performances in multiple sclerosis according to sex

Abstract

In this study, we investigated whether regional distribution of white matter (WM) lesions, normal-appearing [NA] WM microstructural abnormalities and gray matter (GM) atrophy may differently contribute to cognitive performance in multiple sclerosis (MS) patients according to sex. Using the same scanner, brain 3.0T MRI was acquired for 287 MS patients (females = 173; mean age = 42.1 [standard deviation, SD = 12.7] years; relapsing-remitting = 196, progressive = 91; median Expanded Disability Status Scale = 2.5 [interquartile range, IQR = 1.5–5.0]; median disease duration = 12.1 [IQR = 6.3–19.0] years; treatment: none = 70, first-line = 130, second-line = 87) and 172 healthy controls (HC) (females = 92; mean age = 39.3 [SD = 14.8] years). MS patients underwent also Rao’s neuropsychological battery. Using voxel-wise analyses, we investigated in patients sex-related differences in the association of cognitive performances with WM lesions, NAWM fractional anisotropy (FA) and GM volumes (p < 0.01, family-wise error [FWE]). Sixty-six female (38%) and 48 male (42%) MS patients were cognitively impaired, with no significant between-group difference (p = 0.704). However, verbal memory performance was worse in males (p = 0.001), whereas verbal fluency performance was worse in females (p = 0.004). In both sexes, a higher T2-hyperintense lesion prevalence in cognitively-relevant WM tracts was significantly associated with worse cognitive performance (p ≤ 0.006), with stronger associations in females than males in global cognition (p ≤ 0.004). Compared to sex-matched HC, male and female MS patients had widespread lower NAWM FA and GM volume (p < 0.01). In both sexes, worse cognitive performance was associated with widespread reduced NAWM FA (p < 0.01), with stronger associations in females than males in global cognition and verbal memory (p ≤ 0.009). Worse cognitive performance was significantly associated with clusters of cortical GM atrophy in males (p ≤ 0.007) and mainly with deep GM atrophy in females (p ≤ 0.006). In this study, only limited differences in cognitive performances were found between male and female MS patients. A disconnection syndrome due to focal WM lesions and diffuse NAWM microstructural abnormalities seems to be more relevant in female MS patients to explain cognitive impairment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: T2-hyperintense WM lesion probability maps.
Fig. 2: WM microstructural abnormalities.
Fig. 3: GM atrophy.

Similar content being viewed by others

Data availability

The anonymized dataset used and analyzed during the current study is available from the corresponding author upon reasonable request.

References

  1. Gong G, He Y, Evans AC. Brain connectivity: gender makes a difference. Neuroscientist 2011;17:575–91.

    Article  PubMed  Google Scholar 

  2. Menzler K, Belke M, Wehrmann E, Krakow K, Lengler U, Jansen A, et al. Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum, and cingulum. Neuroimage 2011;54:2557–62.

    Article  CAS  PubMed  Google Scholar 

  3. Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry. 2007;62:847–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Prim. 2018;4:43.

    Article  PubMed  Google Scholar 

  5. Gilli F, DiSano KD, Pachner AR. SeXX matters in multiple sclerosis. Front Neurol. 2020;11:616.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tomassini V, Pozzilli C. Sex hormones, brain damage and clinical course of Multiple Sclerosis. J Neurol Sci. 2009;286:35–9.

    Article  CAS  PubMed  Google Scholar 

  7. Li R, Sun X, Shu Y, Mao Z, Xiao L, Qiu W, et al. Sex differences in outcomes of disease-modifying treatments for multiple sclerosis: A systematic review. Mult Scler Relat Disord. 2017;12:23–8.

    Article  PubMed  Google Scholar 

  8. Houtchens MK, Bove R. A case for gender-based approach to multiple sclerosis therapeutics. Front Neuroendocrinol. 2018;50:123–34.

    Article  PubMed  Google Scholar 

  9. Pozzilli C, Tomassini V, Marinelli F, Paolillo A, Gasperini C, Bastianello S. ‘Gender gap’ in multiple sclerosis: magnetic resonance imaging evidence. Eur J Neurol. 2003;10:95–7.

    Article  CAS  PubMed  Google Scholar 

  10. Antulov R, Weinstock-Guttman B, Cox JL, Hussein S, Durfee J, Caiola C, et al. Gender-related differences in MS: a study of conventional and nonconventional MRI measures. Mult Scler J. 2009;15:345–54.

    Article  CAS  Google Scholar 

  11. Calabrese M, De Stefano N, Atzori M, Bernardi V, Mattisi I, Barachino L, et al. Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol. 2007;64:1416–22.

    Article  PubMed  Google Scholar 

  12. Schoonheim MM, Vigeveno RM, Rueda Lopes FC, Pouwels PJ, Polman CH, Barkhof F, et al. Sex-specific extent and severity of white matter damage in multiple sclerosis: implications for cognitive decline. Hum Brain Mapp. 2014;35:2348–58.

    Article  PubMed  Google Scholar 

  13. Schoonheim MM, Popescu V, Rueda Lopes FC, Wiebenga OT, Vrenken H, Douw L, et al. Subcortical atrophy and cognition: sex effects in multiple sclerosis. Neurology 2012;79:1754–61.

    Article  PubMed  Google Scholar 

  14. Rocca MA, Amato MP, De Stefano N, Enzinger C, Geurts JJ, Penner IK, et al. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 2015;14:302–17.

    Article  PubMed  Google Scholar 

  15. Sumowski JF, Benedict RHB, Enzinger C, Filippi M, Geurts JJ, Hamalainen P, et al. Cognition in multiple sclerosis. Neurology 2018;90:278–88.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Donaldson E, Patel VP, Shammi P, Feinstein A. Why sex matters: a cognitive study of people with multiple sclerosis. Cogn Behav Neurol. 2019;32:39–45.

    Article  PubMed  Google Scholar 

  17. Beatty WW, Aupperle RL. Sex differences in cognitive impairment in multiple sclerosis. Clin Neuropsychol. 2002;16:472–80.

    Article  PubMed  Google Scholar 

  18. Lin SJ, Lam J, Beveridge S, Vavasour I, Traboulsee A, Li DKB, et al. Cognitive performance in subjects with multiple sclerosis is robustly influenced by gender in canonical-correlation. Anal J Neuropsychol Clin N. 2017;29:119–27.

    Article  Google Scholar 

  19. Schoonheim MM, Hulst HE, Landi D, Ciccarelli O, Roosendaal SD, Sanz-Arigita EJ, et al. Gender-related differences in functional connectivity in multiple sclerosis. Mult Scler J. 2012;18:164–73.

    Article  Google Scholar 

  20. Koenig KA, Lowe MJ, Lin J, Sakaie KE, Stone L, Bermel RA, et al. Sex differences in resting-state functional connectivity in multiple sclerosis. Am J Neuroradiol. 2013;34:2304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Savettieri G, Messina D, Andreoli V, Bonavita S, Caltagirone C, Cittadella R, et al. Gender-related effect of clinical and genetic variables on the cognitive impairment in multiple sclerosis. J Neurol. 2004;251:1208–14.

    Article  PubMed  Google Scholar 

  22. Dolezal O, Gabelic T, Horakova D, Bergsland N, Dwyer MG, Seidl Z, et al. Development of gray matter atrophy in relapsing-remitting multiple sclerosis is not gender dependent: results of a 5-year follow-up study. Clin Neurol Neurosurg. 2013;115:S42–8.

    Article  PubMed  Google Scholar 

  23. Fazekas F, Enzinger C, Wallner-Blazek M, Ropele S, Pluta-Fuerst A, Fuchs S. Gender differences in MRI studies on multiple sclerosis. J Neurol Sci. 2009;286:28–30.

    Article  PubMed  Google Scholar 

  24. Giorgio A, Battaglini M, Smith SM, De Stefano N. Brain atrophy assessment in multiple sclerosis: importance and limitations. Neuroimaging Clin N. Am. 2008;18:675–86.

    Article  PubMed  Google Scholar 

  25. Li DK, Held U, Petkau J, Daumer M, Barkhof F, Fazekas F, et al. MRI T2 lesion burden in multiple sclerosis: a plateauing relationship with clinical disability. Neurology 2006;66:1384–9.

    Article  CAS  PubMed  Google Scholar 

  26. Rao SM, and the Cognitive Function Study Group of the National Multiple Sclerosis Society. A manual for the brief repeatable battery of neuropsychological test in multiple sclerosis. 1990, Milwaukee, WI: Medical College of Wisconsin

  27. Amato MP, Portaccio E, Goretti B, Zipoli V, Ricchiuti L, De Caro MF, et al. The Rao’s Brief Repeatable Battery and Stroop Test: normative values with age, education and gender corrections in an Italian population. Mult Scler J. 2006;12:787–93.

    Article  CAS  Google Scholar 

  28. Sepulcre J, Vanotti S, Hernandez R, Sandoval G, Caceres F, Garcea O, et al. Cognitive impairment in patients with multiple sclerosis using the Brief Repeatable Battery-Neuropsychology test. Mult Scler J. 2006;12:187–95.

    Article  CAS  Google Scholar 

  29. Ruano L, Portaccio E, Goretti B, Niccolai C, Severo M, Patti F, et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult Scler J. 2017;23:1258–67.

    Article  Google Scholar 

  30. Rovaris M, Rocca MA, Sormani MP, Comi G, Filippi M. Reproducibility of brain MRI lesion volume measurements in multiple sclerosis using a local thresholding technique: Effects of formal operator training. Eur Neurol. 1999;41:226–30.

    Article  CAS  PubMed  Google Scholar 

  31. Udupa JK, Wei L, Samarasekera S, Miki Y, vanBuchem MA, Grossman RI. Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE T Med Imaging. 1997;16:598–609.

    Article  CAS  Google Scholar 

  32. Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med. 2004;51:103–14.

    Article  CAS  PubMed  Google Scholar 

  33. Scheuringer A, Wittig R, Pletzer B. Sex differences in verbal fluency: the role of strategies and instructions. Cogn Process. 2017;18:407–17.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gauthier CT, Duyme M, Zanca M, Capron C. Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study. Cortex 2009;45:164–76.

    Article  PubMed  Google Scholar 

  35. Mesaros S, Rocca MA, Kacar K, Kostic J, Copetti M, Stosic-Opincal T, et al. Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis. Neurology 2012;78:969–75.

    Article  CAS  PubMed  Google Scholar 

  36. Hulst HE, Steenwijk MD, Versteeg A, Pouwels PJ, Vrenken H, Uitdehaag BM, et al. Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology 2013;80:1025–32.

    Article  CAS  PubMed  Google Scholar 

  37. Preziosa P, Rocca MA, Pagani E, Stromillo ML, Enzinger C, Gallo A, et al. Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: A Multicenter Study. Hum Brain Mapp. 2016;37:1627–44.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Conti L, Preziosa P, Meani A, Pagani E, Valsasina P, Marchesi O, et al. Unraveling the substrates of cognitive impairment in multiple sclerosis: A multiparametric structural and functional magnetic resonance imaging study. Eur J Neurol. 2021;28:3749–59.

    Article  PubMed  Google Scholar 

  39. Eijlers AJC, Meijer KA, van Geest Q, Geurts JJG, Schoonheim MM. Determinants of cognitive impairment in patients with multiple sclerosis with and without atrophy. Radiology 2018;288:544–51.

    Article  PubMed  Google Scholar 

  40. Kincses ZT, Ropele S, Jenkinson M, Khalil M, Petrovic K, Loitfelder M, et al. Lesion probability mapping to explain clinical deficits and cognitive performance in multiple sclerosis. Mult Scler J. 2011;17:681–9.

    Article  CAS  Google Scholar 

  41. Meijer KA, Muhlert N, Cercignani M, Sethi V, Ron MA, Thompson AJ, et al. White matter tract abnormalities are associated with cognitive dysfunction in secondary progressive multiple sclerosis. Mult Scler J. 2016;22:1429–37.

    Article  Google Scholar 

  42. Rossi F, Giorgio A, Battaglini M, Stromillo ML, Portaccio E, Goretti B, et al. Relevance of brain lesion location to cognition in relapsing multiple sclerosis. PLoS One. 2012;7:e44826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gobbi C, Rocca MA, Pagani E, Riccitelli GC, Pravata E, Radaelli M, et al. Forceps minor damage and co-occurrence of depression and fatigue in multiple sclerosis. Mult Scler J. 2014;20:1633–40.

    Article  CAS  Google Scholar 

  44. Luchetti S, van Eden CG, Schuurman K, van Strien ME, Swaab DF, Huitinga I. Gender differences in multiple sclerosis: induction of estrogen signaling in male and progesterone signaling in female lesions. J Neuropathol Exp Neurol. 2014;73:123–35.

    Article  CAS  PubMed  Google Scholar 

  45. Dineen RA, Vilisaar J, Hlinka J, Bradshaw CM, Morgan PS, Constantinescu CS, et al. Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 2009;132:239–49.

    Article  CAS  PubMed  Google Scholar 

  46. Roosendaal SD, Geurts JJ, Vrenken H, Hulst HE, Cover KS, Castelijns JA, et al. Regional DTI differences in multiple sclerosis patients. Neuroimage 2009;44:1397–403.

    Article  CAS  PubMed  Google Scholar 

  47. Barnes J, Ridgway GR, Bartlett J, Henley SMD, Lehmann M, Hobbs N, et al. Head size, age, and gender adjustment in MRI studies: a necessary nuisance? NeuroImage 2010;53:1244–55.

    Article  PubMed  Google Scholar 

  48. Buchpiguel M, Rosa P, Squarzoni P, Duran FLS, Tamashiro-Duran JH, Leite CC, et al. Differences in total brain volume between sexes in a cognitively unimpaired elderly population. Clinics 2020;75:e2245.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schoonheim MM, Hulst HE, Brandt RB, Strik M, Wink AM, Uitdehaag BM, et al. Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology 2015;84:776–83.

    Article  PubMed  Google Scholar 

  50. Eijlers AJC, Dekker I, Steenwijk MD, Meijer KA, Hulst HE, Pouwels PJW, et al. Cortical atrophy accelerates as cognitive decline worsens in multiple sclerosis. Neurology 2019;93:e1348–e59.

    Article  PubMed  Google Scholar 

  51. Damjanovic D, Valsasina P, Rocca MA, Stromillo ML, Gallo A, Enzinger C, et al. Hippocampal and deep gray matter nuclei atrophy is relevant for explaining cognitive impairment in MS: A multicenter study. Am J Neuroradiol. 2017;38:18–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rocca MA, Absinta M, Amato MP, Moiola L, Ghezzi A, Veggiotti P, et al. Posterior brain damage and cognitive impairment in pediatric multiple sclerosis. Neurology 2014;82:1314–21.

    Article  PubMed  Google Scholar 

  53. Rocca MA, Barkhof F, De Luca J, Frisen J, Geurts JJG, Hulst HE, et al. The hippocampus in multiple sclerosis. Lancet Neurol. 2018;17:918–26.

    Article  CAS  PubMed  Google Scholar 

  54. Sicotte NL, Kern KC, Giesser BS, Arshanapalli A, Schultz A, Montag M, et al. Regional hippocampal atrophy in multiple sclerosis. Brain 2008;131:1134–41.

    Article  CAS  PubMed  Google Scholar 

  55. Kuceyeski AF, Vargas W, Dayan M, Monohan E, Blackwell C, Raj A, et al. Modeling the Relationship among Gray Matter Atrophy, Abnormalities in Connecting White Matter, and Cognitive Performance in Early Multiple Sclerosis. Am J Neuroradiol. 2015;36:702–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mühlau M, Buck D, Förschler A, Boucard CC, Arsic M, Schmidt P, et al. White-matter lesions drive deep gray-matter atrophy in early multiple sclerosis: support from structural MRI. Mult Scler J. 2013;19:1485–92.

    Article  Google Scholar 

  57. Fuchs TA, Carolus K, Benedict RHB, Bergsland N, Ramasamy D, Jakimovski D, et al. Impact of Focal White Matter Damage on Localized Subcortical Gray Matter Atrophy in Multiple Sclerosis: A 5-Year Study. Am J Neuroradiol. 2018;39:1480–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tremlett H, Paty D, Devonshire V. Disability progression in multiple sclerosis is slower than previously reported. Neurology 2006;66:172–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NT contributed to drafting/revising the manuscript and preparing the figures, and analysis and interpretation of the data. PP contributed to drafting/revising the manuscript and preparing the figures, study concept, and acquisition, analysis, and interpretation of the data. AM, EP, and CV contributed to drafting/revising the manuscript, analysis, and interpretation of the data. MF and MA Rocca contributed to drafting/revising the manuscript, study concept, interpretation of the data, and study supervisor. All the authors gave their approval to the current version of the manuscript.

Corresponding author

Correspondence to Maria A. Rocca.

Ethics declarations

Competing interests

The authors declare that they have no competing interests in relation to this work. Potential conflicts of interest outside the submitted work are as follows: N. Tedone, A. Meani, E. Pagani, and C. Vizzino have nothing to disclose. P. Preziosa received speaker honoraria from Roche, Biogen, Novartis, Merck Serono, Bristol Myers Squibb and Genzyme. He has received research support from Italian Ministry of Health and Fondazione Italiana Sclerosi Multipla. M. Filippi is Editor-in-Chief of the Journal of Neurology, Associate Editor of Human Brain Mapping, Neurological Sciences, and Radiology; received compensation for consulting services from Alexion, Almirall, Biogen, Merck, Novartis, Roche, Sanofi; speaking activities from Bayer, Biogen, Celgene, Chiesi Italia SpA, Eli Lilly, Genzyme, Janssen, Merck-Serono, Neopharmed Gentili, Novartis, Novo Nordisk, Roche, Sanofi, Takeda, and TEVA; participation in Advisory Boards for Alexion, Biogen, Bristol-Myers Squibb, Merck, Novartis, Roche, Sanofi, Sanofi-Aventis, Sanofi-Genzyme, Takeda; scientific direction of educational events for Biogen, Merck, Roche, Celgene, Bristol-Myers Squibb, Lilly, Novartis, Sanofi-Genzyme; he receives research support from Biogen Idec, Merck-Serono, Novartis, Roche, Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla, and ARiSLA (Fondazione Italiana di Ricerca per la SLA). M.A. Rocca received consulting fees from Biogen, Bristol Myers Squibb, Eli Lilly, Janssen, Roche; and speaker honoraria from AstraZaneca, Biogen, Bristol Myers Squibb, Bromatech, Celgene, Genzyme, Horizon Therapeutics Italy, Merck Serono SpA, Novartis, Roche, Sanofi and Teva. She receives research support from the MS Society of Canada, the Italian Ministry of Health, and Fondazione Italiana Sclerosi Multipla. She is Associate Editor for Multiple Sclerosis and Related Disorders.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedone, N., Preziosa, P., Meani, A. et al. Regional white matter and gray matter damage and cognitive performances in multiple sclerosis according to sex. Mol Psychiatry 28, 1783–1792 (2023). https://doi.org/10.1038/s41380-023-01996-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-01996-2

This article is cited by

Search

Quick links