Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Morphometric dis-similarity between cortical and subcortical areas underlies cognitive function and psychiatric symptomatology: a preadolescence study from ABCD

Abstract

Preadolescence is a critical period characterized by dramatic morphological changes and accelerated cortico-subcortical development. Moreover, the coordinated development of cortical and subcortical regions underlies the emerging cognitive functions during this period. Deviations in this maturational coordination may underlie various psychiatric disorders that begin during preadolescence, but to date these deviations remain largely uncharted. We constructed a comprehensive whole-brain morphometric similarity network (MSN) from 17 neuroimaging modalities in a large preadolescence sample (N = 8908) from Adolescent Brain Cognitive Development (ABCD) study and investigated its association with 10 cognitive subscales and 27 psychiatric subscales or diagnoses. Based on the MSNs, each brain was clustered into five modules with distinct cytoarchitecture and evolutionary relevance. While morphometric correlation was positive within modules, it was negative between modules, especially between isocortical and paralimbic/subcortical modules; this developmental dissimilarity was genetically linked to synapse and neurogenesis. The cortico-subcortical dissimilarity becomes more pronounced longitudinally in healthy children, reflecting developmental differentiation of segregated cytoarchitectonic areas. Higher cortico-subcortical dissimilarity (between the isocortical and paralimbic/subcortical modules) were related to better cognitive performance. In comparison, children with poor modular differentiation between cortex and subcortex displayed higher burden of externalizing and internalizing symptoms. These results highlighted cortical-subcortical morphometric dissimilarity as a dynamic maturational marker of cognitive and psychiatric status during the preadolescent stage and provided insights into brain development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall flowchart of MSN construction and analysis.
Fig. 2: Modular structure of morphometric similarity network and its consistency with cytoarchitecture and functional network.
Fig. 3: Morphometric similarity network (MSN) and morphometric co-developmental network (MCDN).
Fig. 4: Correlation between baseline module-level MSN and cognition (NIH toolbox) and psychiatric phenotypes (CBCL scores and KSADS diagnosis).
Fig. 5: Principal Component Analysis (PCA) results of all t-value maps obtained from the association analyses between MSN and cognitive/psychiatric phenotypes.
Fig. 6: Enrichment results of genes associated with morphometric similarity.

Similar content being viewed by others

Data availability

GWAS summary statistics of MSN could be downloaded on (https://drive.google.com/drive/folders/1cOfYZe60PAI2JjlEhKL3N-qcJCGtmzUv?usp=sharing).

References

  1. Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, et al. Brain charts for the human lifespan. Nature. 2022;604:525–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence?. Nat Rev Neurosci. 2008;9:947–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fuhrmann D, Knoll LJ, Blakemore S-J. Adolescence as a sensitive period of brain development. Trends Cogn Sci. 2015;19:558–66.

    PubMed  Google Scholar 

  4. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2:861–3.

    CAS  PubMed  Google Scholar 

  5. Thompson PM, Sowell ER, Gogtay N, Giedd JN, Vidal CN, Hayashi KM, et al. Structural MRI and brain development. Int Rev Neurobiol. 2005;67:285–323.

    PubMed  Google Scholar 

  6. Mechelli A, Friston KJ, Frackowiak RS, Price CJ. Structural covariance in the human cortex. J Neurosci. 2005;25:8303–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zielinski BA, Gennatas ED, Zhou J, Seeley WW. Network-level structural covariance in the developing brain. Proc Natl Acad Sci. 2010;107:18191–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Casey BJ, Getz S, Galvan A. The adolescent brain. Dev Rev. 2008;28:62–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. King DJ, Seri S, Beare R, Catroppa C, Anderson VA, Wood AG. Developmental divergence of structural brain networks as an indicator of future cognitive impairments in childhood brain injury: Executive functions. Dev Cogn Neurosci. 2020;42:100762.

    PubMed  PubMed Central  Google Scholar 

  10. Montembeault M, Joubert S, Doyon J, Carrier J, Gagnon J-F, Monchi O, et al. The impact of aging on gray matter structural covariance networks. Neuroimage. 2012;63:754–9.

    PubMed  Google Scholar 

  11. DuPre E, Spreng RN. Structural covariance networks across the life span, from 6 to 94 years of age. Netw Neurosci. 2017;1:302–23.

    PubMed  PubMed Central  Google Scholar 

  12. Alexander-Bloch A, Raznahan A, Bullmore E, Giedd J. The convergence of maturational change and structural covariance in human cortical networks. J Neurosci. 2013;33:2889–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Palaniyappan L, Park B, Balain V, Dangi R, Liddle P. Abnormalities in structural covariance of cortical gyrification in schizophrenia. Brain Struct Funct. 2015;220:2059–71.

    CAS  PubMed  Google Scholar 

  14. Bethlehem RA, Romero-Garcia R, Mak E, Bullmore E, Baron-Cohen S. Structural covariance networks in children with autism or ADHD. Cereb Cortex. 2017;27:4267–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Spreng RN, DuPre E, Ji JL, Yang G, Diehl C, Murray JD, et al. Structural covariance reveals alterations in control and salience network integrity in chronic schizophrenia. Cereb Cortex. 2019;29:5269–84.

    PubMed  PubMed Central  Google Scholar 

  16. Ajnakina O, Das T, Lally J, Di Forti M, Pariante CM, Marques TR, et al. Structural Covariance of Cortical Gyrification at Illness Onset in Treatment Resistance: A Longitudinal Study of First-Episode Psychoses. Schizophr Bull. 2021;47:1729–39.

  17. Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30:718–29.

    PubMed  Google Scholar 

  18. Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20:327–48.

    PubMed  PubMed Central  Google Scholar 

  19. Brown TT, Kuperman JM, Chung Y, Erhart M, McCabe C, Hagler DJ Jr., et al. Neuroanatomical assessment of biological maturity. Curr Biol. 2012;22:1693–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Seidlitz J, Váša F, Shinn M, Romero-Garcia R, Whitaker KJ, Vértes PE, et al. Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron. 2018;97:231–47. e7.

    CAS  PubMed  Google Scholar 

  21. Wei Y, Scholtens LH, Turk E, Van Den Heuvel MP. Multiscale examination of cytoarchitectonic similarity and human brain connectivity. Netw Neurosci. 2018;3:124–37.

    PubMed  PubMed Central  Google Scholar 

  22. Seidlitz J, Nadig A, Liu S, Bethlehem RAI, Vértes PE, Morgan SE, et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nat Commun. 2020;11:1–14.

    Google Scholar 

  23. King DJ, Wood AG. Clinically feasible brain morphometric similarity network construction approaches with restricted magnetic resonance imaging acquisitions. Netw Neurosci. 2020;4:274–91.

    PubMed  PubMed Central  Google Scholar 

  24. Galdi P, Blesa M, Sullivan G, Lamb GJ, Stoye DQ, Quigley AJ, et al. Neonatal morphometric similarity networks predict atypical brain development associated with preterm birth. Connect NeuroImaging. 2018;11083:47–57.

    Google Scholar 

  25. Galdi P, Blesa M, Stoye DQ, Sullivan G, Lamb GJ, Quigley AJ, et al. Neonatal morphometric similarity mapping for predicting brain age and characterizing neuroanatomic variation associated with preterm birth. Neuroimage Clin. 2020;25:102195.

    PubMed  PubMed Central  Google Scholar 

  26. Fenchel D, Dimitrova R, Seidlitz J, Robinson EC, Batalle D, Hutter J, et al. Development of microstructural and morphological cortical profiles in the neonatal brain. Cereb Cortex. 2020;30:5767–79.

    PubMed  PubMed Central  Google Scholar 

  27. Li J, Seidlitz J, Suckling J, Fan F, Ji G, Meng Y, et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat Commun. 2021;12:1647–1647.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Morgan SE, Seidlitz J, Whitaker KJ, Romero-Garcia R, Clifton NE, Scarpazza C, et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc Natl Acad Sci. 2019;116:9604–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Konrad K, Firk C, Uhlhaas PJ. Brain development during adolescence: neuroscientific insights into this developmental period. Dtsch Ärzteblatt Int. 2013;110:425.

    Google Scholar 

  30. Casey BJ, Heller AS, Gee DG, Cohen AO. Development of the emotional brain. Neurosci Lett. 2019;693:29–34.

    CAS  PubMed  Google Scholar 

  31. Mills KL, Goddings A-L, Clasen LS, Giedd JN, Blakemore S-J. The developmental mismatch in structural brain maturation during adolescence. Dev Neurosci. 2014;36:147–60.

    CAS  PubMed  Google Scholar 

  32. Romero-Garcia R, Whitaker KJ, Váša F, Seidlitz J, Shinn M, Fonagy P, et al. Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. Neuroimage. 2018;171:256–67.

    PubMed  Google Scholar 

  33. Doucet GE, Moser DA, Rodrigue A, Bassett DS, Glahn DC, Frangou S. Person-based brain morphometric similarity is heritable and correlates with biological features. Cereb Cortex. 2019;29:852–62.

    PubMed  Google Scholar 

  34. Casey B, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, et al. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Devl Cogn Neurosci. 2018;32:43–54.

    CAS  Google Scholar 

  35. Hagler DJ Jr, Hatton S, Cornejo MD, Makowski C, Fair DA, Dick AS, et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage. 2019;202:116091.

    CAS  PubMed  Google Scholar 

  36. Fischl B. FreeSurfer. Neuroimage. 2012;62:774–81.

    PubMed  Google Scholar 

  37. Norbom LB, Doan NT, Alnæs D, Kaufmann T, Moberget T, Rokicki J, et al. Probing brain developmental patterns of myelination and associations with psychopathology in youths using gray/white matter contrast. Biol Psychiatry. 2019;85:389–98.

    PubMed  Google Scholar 

  38. Panizzon MS, Fennema-Notestine C, Kubarych TS, Chen C-H, Eyler LT, Fischl B, et al. Genetic and environmental influences of white and gray matter signal contrast: a new phenotype for imaging genetics?. Neuroimage. 2012;60:1686–95.

    PubMed  Google Scholar 

  39. White NS, Leergaard TB, D’Arceuil H, Bjaalie JG, Dale AM. Probing tissue microstructure with restriction spectrum imaging: histological and theoretical validation. Hum Brain Mapp. 2013;34:327–46.

    PubMed  Google Scholar 

  40. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4:316–29.

    PubMed  PubMed Central  Google Scholar 

  41. Soares J, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7:31.

    PubMed  PubMed Central  Google Scholar 

  42. White NS, McDonald CR, Farid N, Kuperman JM, Kesari S, Dale AM. Improved conspicuity and delineation of high-grade primary and metastatic brain tumors using “restriction spectrum imaging”: quantitative comparison with high B-value DWI and ADC. Am J Neuroradiol. 2013;34:958–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    PubMed  Google Scholar 

  44. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.

    CAS  PubMed  Google Scholar 

  45. A. Fornito, A. Zalesky, and E. Bullmore, Fundamentals of brain network analysis. Academic Press, 2016.

  46. Yun J-Y, Boedhoe PS, Vriend C, Jahanshad N, Abe Y, Ameis SH. et al. Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium. Brain. 2020;143:684–700.

    PubMed  PubMed Central  Google Scholar 

  47. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

  48. C. F. von Economo and G. N. Koskinas, Die cytoarchitektonik der hirnrinde des erwachsenen menschen. Springer, 1925.

  49. Modabbernia A, Reichenberg A, Moser DA, Doucet GE, Artiges E, Banaschewski T, et al. Linked patterns of biological and environmental covariation with brain structure in adolescence: a population-based longitudinal study. Mol Psychiatry. 2021;26:4905–18.

    CAS  PubMed  Google Scholar 

  50. Brouwer RM, Klein M, Grasby KL, Schnack HG, Jahanshad N, Teeuw J, et al. Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nat Neurosci. 2022;25:421–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferschmann L, Vijayakumar N, Grydeland H, Overbye K, Mills KL, Fjell AM, et al. Cognitive reappraisal and expressive suppression relate differentially to longitudinal structural brain development across adolescence. Cortex. 2021;136:109–23.

    PubMed  Google Scholar 

  52. Tooley UA, Bassett DS, Mackey AP. Environmental influences on the pace of brain development. Nat Rev Neurosci. 2021;22:372–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kwon D, Pfefferbaum A, Sullivan EV, Pohl KM. Regional growth trajectories of cortical myelination in adolescents and young adults: longitudinal validation and functional correlates. Brain Imaging Behav. 2020;14:242–66.

    PubMed  Google Scholar 

  54. Palaniyappan L, Das TK, Winmill L, Hough M, James A, Palaniyappan L. Progressive post-onset reorganisation of MRI-derived cortical thickness in adolescents with schizophrenia. Schizophr Res. 2019;208:477–8.

    PubMed  Google Scholar 

  55. Weintraub S, Dikmen SS, Heaton RK, Tulsky DS, Zelazo PD, Bauer PJ, et al. Cognition assessment using the NIH Toolbox. Neurology. 2013;80:S54–S64.

    PubMed  PubMed Central  Google Scholar 

  56. T. M. Achenbach, The Child Behavior Checklist and related instruments. 1999.

  57. Townsend L, Kobak K, Kearney C, Milham M, Andreotti C, Escalera J, et al. Development of three web-based computerized versions of the Kiddie Schedule for affective disorders and schizophrenia child psychiatric diagnostic interview: preliminary validity data. J Am Acad Child Adolesc Psychiatry. 2020;59:309–25.

    PubMed  Google Scholar 

  58. J. Kaufman, B. Birmaher, D. Brent, U. Rao, C. Flynn, P. Moreci et al., Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data J Am Acad Child Adolesc Psychiatry, 36, 980–8, 1997.

  59. Ivanova MY, Achenbach TM, Dumenci L, Rescorla LA, Almqvist F, Weintraub S, et al. Testing the 8-syndrome structure of the child behavior checklist in 30 societies. J Clin Child Adolesc Psychol. 2007;36:405–17.

    PubMed  Google Scholar 

  60. Achenbach TM, Dumenci L, Rescorla LA. DSM-oriented and empirically based approaches to constructing scales from the same item pools. J Clin child Adolesc Psychol. 2003;32:328–40.

    PubMed  Google Scholar 

  61. T. Achenbach and L. Rescorla, Multicultural supplement to the manual for the ASEBA school-age forms & profiles Burlington VT: University of Vermont Research Center for Children, Youth, & Families, 2007.

  62. Barch DM, Albaugh MD, Avenevoli S, Chang L, Clark DB, Glantz MD, et al. Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: Rationale and description. Dev Cogn Neurosci. 2018;32:55–66.

    PubMed  Google Scholar 

  63. Paulus MP, Squeglia LM, Bagot K, Jacobus J, Kuplicki R, Breslin FJ, et al. Screen media activity and brain structure in youth: evidence for diverse structural correlation networks from the ABCD study. Neuroimage. 2019;185:140–53.

    PubMed  Google Scholar 

  64. S. G. Heeringa and P. A. Berglund, A guide for population-based analysis of the Adolescent Brain Cognitive Development (ABCD) Study baseline data BioRxiv, 2020.

  65. Paul SE, Hatoum AS, Fine JD, Johnson EC, Hansen I, Karcher NR, et al. Associations between prenatal cannabis exposure and childhood outcomes: results from the ABCD study. JAMA Psychiatry. 2021;78:64–76.

    PubMed  Google Scholar 

  66. Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population stratification in genome-wide association studies. Nat Rev Genet. 2010;11:459–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Watanabe K, Taskesen E, Van A, et al. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1–11.

    CAS  Google Scholar 

  68. Gene Oncology Consortium The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015;348:648–60.

    Google Scholar 

  69. Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014;17:1418–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Scholtens LH, de Reus MA, de Lange SC, Schmidt R, van den Heuvel MP. An mri von economo–koskinas atlas. Neuroimage. 2018;170:249–56.

    PubMed  Google Scholar 

  73. Gene Oncology Consortium Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049–D1056.

    Google Scholar 

  74. Steinberg L. A social neuroscience perspective on adolescent risk-taking. Dev Rev. 2008;28:78–106.

    PubMed  PubMed Central  Google Scholar 

  75. Belsky J, de Haan M. Annual Research Review: Parenting and children’s brain development: the end of the beginning. J Child Psychol Psychiatry. 2011;52:409–28.

    PubMed  Google Scholar 

  76. Johnson SB, Blum RW, Giedd JN. Adolescent maturity and the brain: the promise and pitfalls of neuroscience research in adolescent health policy. J Adolesc Health: Off Publ Soc Adolesc Med. 2009;45:216–21.

    Google Scholar 

  77. Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R, et al. Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry. 2009;166:702–10.

    PubMed  PubMed Central  Google Scholar 

  78. Benningfield MM, Blackford JU, Ellsworth ME, Samanez-Larkin GR, Martin PR, Cowan RL, et al. Caudate responses to reward anticipation associated with delay discounting behavior in healthy youth. Dev Cogn Neurosci. 2014;7:43–52.

    PubMed  Google Scholar 

  79. LeDoux J. The amygdala. Curr Biol. 2007;17:R868–R874.

    CAS  PubMed  Google Scholar 

  80. Steinberg L. A dual systems model of adolescent risk‐taking. Dev Psychobiol: J Int Soc Dev Psychobiol. 2010;52:216–24.

    Google Scholar 

  81. Glasser MF, Goyal MS, Preuss TM, Raichle ME, Van Essen DC. Trends and properties of human cerebral cortex: correlations with cortical myelin content. Neuroimage. 2014;93:165–75.

    CAS  PubMed  Google Scholar 

  82. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci. 2016;113:12574–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Slater DA, Melie-Garcia L, Preisig M, Kherif F, Lutti A, Draganski B. Evolution of white matter tract microstructure across the life span. Human Brain Mapp. 2019;40:2252–68.

  84. Lacerda ALT, Nicoletti MA, Brambilla P, Sassi RB, Mallinger AG, Frank E, et al. Anatomical MRI study of basal ganglia in major depressive disorder. Psychiatry Res: Neuroimaging. 2003;124:129–40.

    Google Scholar 

  85. Canbeyli R. Sensorimotor modulation of mood and depression: an integrative review. Behav Brain Res. 2010;207:249–64.

    CAS  PubMed  Google Scholar 

  86. Kropf E, Syan SK, Minuzzi L, Frey BN. From anatomy to function: the role of the somatosensory cortex in emotional regulation. Braz J Psychiatry. 2018;41:261–9.

    PubMed  PubMed Central  Google Scholar 

  87. K. S. Saladin and C. Porth, Anatomy & physiology: the unity of form and function. McGraw-Hill New York, NY, USA:, 2010.

  88. Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci. 2006;103:17973–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lodato S, Arlotta P. Generating neuronal diversity in the mammalian cerebral cortex. Annu Rev Cell Dev Biol. 2015;31:699–720.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell. 2011;146:18–36.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JZ was supported by Science and Technology Innovation 2030 - Brain Science and Brain-Inspired Intelligence Project (Grant No. 2021ZD0200204), Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01) and ZJLab, NSFC 61973086, and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China. KZ was supported by National Natural Science Foundation 62276099, and Shanghai Pujiang Program. LP acknowledges research support from the Tanna Schulich Chair of Neuroscience and Mental Health (Schulich School of Medicine, Western University: 2019 – 2022); Monique H. Bourgeois Chair in Developmental Disorders and Graham Boeckh Foundation (Douglas Research Centre, McGill University) and a salary award from the Fonds de recherche du Quebec-Sante ́ (FRQS). JF was supported by the 111 Project (No. B18015), the key project of Shanghai Science and Technology (No. 16JC1420402), National Key R&D Program of China (No. 2018YFC1312900), National Natural Science Foundation of China (NSFC 91630314). Xiang-Zhen Kong is supported by the National Natural Science Foundation of China (32171031), the Fundamental Research Funds for the Central Universities (2021XZZX006), and Information Technology Center of Zhejiang University.

Author information

Authors and Affiliations

Authors

Contributions

XW and JZ contributed to the conception of the study; XW, GY and KZ performed the data analysis; XW, JZ and LP wrote the manuscript; LP, KZ, ZL helped perform the analysis with constructive discussions; LP, KZ, JS, ZL, GS, JF, BS, TR, EB helped with the revision of the article.

Corresponding author

Correspondence to Jie Zhang.

Ethics declarations

Competing interests

LP reports personal fees for serving as chief editor from the Canadian Medical Association Journals (https://www.jpn.ca/), speaker/consultant fee from Janssen Canada and Otsuka Canada, SPMM Course Limited, UK, Canadian Psychiatric Association; book royalties from Oxford University Press; investigator-initiated educational grants from Janssen Canada, Sunovion and Otsuka Canada outside the submitted work. All other authors report no biomedical financial interests or potential conflicts of interest. None of the above-listed companies or funding agencies have had any influence on the content of this article.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Palaniyappan, L., Yu, G. et al. Morphometric dis-similarity between cortical and subcortical areas underlies cognitive function and psychiatric symptomatology: a preadolescence study from ABCD. Mol Psychiatry 28, 1146–1158 (2023). https://doi.org/10.1038/s41380-022-01896-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01896-x

This article is cited by

Search

Quick links