Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The orphan receptor GPR88 controls impulsivity and is a risk factor for Attention-Deficit/Hyperactivity Disorder

Subjects

Abstract

The neural orphan G protein coupled receptor GPR88 is predominant in the striatum and cortex of both rodents and humans, and considered a potential target for brain disorders. Previous studies have shown multiple behavioral phenotypes in Gpr88 knockout mice, and human genetic studies have reported association with psychosis. Here we tested the possibility that GPR88 contributes to Attention Deficit Hyperactivity Disorder (ADHD). In the mouse, we tested Gpr88 knockout mice in three behavioral paradigms, best translatable between rodents and humans, and found higher motor impulsivity and reduced attention together with the reported hyperactivity. Atomoxetine, a typical ADHD drug, reduced impulsivity in mutant mice. Conditional Gpr88 knockout mice in either D1R-type or D2R-type medium spiny neurons revealed distinct implications of the two receptor populations in waiting and stopping impulsivity. Thus, animal data demonstrate that deficient GPR88 activity causally promotes ADHD-like behaviors, and identify circuit mechanisms underlying GPR88-regulated impulsivity. In humans, we performed a family-based genetic study including 567 nuclear families with DSM-IV diagnosis of ADHD. There was a minor association for SNP rs2036212 with diagnosis, treatment response and cognition. A stronger association was found for SNP rs2809817 upon patient stratification, suggesting that the T allele is a risk factor when prenatal stress is involved. Human data therefore identify GPR88 variants associated with the disease, and highlight a potential role of life trajectories to modulate GPR88 function. Overall, animal and human data concur to suggest that GPR88 signaling should be considered a key factor for diagnostic and treatment of ADHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cardinal features of ADHD.
Fig. 2: Gpr88 mutant mice show ADHD-like behavior in the 5-CSRTT and higher inattention in the ASST.
Fig. 3: Gpr88 mutant mice show higher motor impulsivity in the Go/No-Go task.
Fig. 4: A2A-GPR88 and D1-GPR88 show higher waiting and stopping impulsivity, respectively, in the Go/No-Go task.

Similar content being viewed by others

References

  1. Ehrlich AT, Semache M, Bailly J, Wojcik S, Arefin TM, Colley C, et al. Mapping GPR88-Venus illuminates a novel role for GPR88 in sensory processing. Brain Struct Funct. 2018;223:1275–96.

    CAS  PubMed  Google Scholar 

  2. Massart R, Mignon V, Stanic J, Munoz-Tello P, Becker JA, Kieffer BL, et al. Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat: Establishment of a dual nuclear-cytoplasmic localization. J Comp Neurol. 2016;524:2776–802.

    CAS  PubMed  Google Scholar 

  3. Logue SF, Grauer SM, Paulsen J, Graf R, Taylor N, Sung MA, et al. The orphan GPCR, GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders? Mol Cell Neurosci. 2009;42:438–47.

    CAS  PubMed  Google Scholar 

  4. Quintana A, Sanz E, Wang W, Storey GP, Guler AD, Wanat MJ, et al. Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors. Nat Neurosci. 2012;15:1547–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Meirsman AC, Le Merrer J, Pellissier LP, Diaz J, Clesse D, Kieffer BL, et al. Mice lacking GPR88 show motor deficit, improved spatial learning, and low anxiety reversed by delta opioid antagonist. Biol Psychiatry. 2016;79:917–27.

    CAS  PubMed  Google Scholar 

  6. Maroteaux G, Arefin TM, Harsan LA, Darcq E, Ben Hamida S, Kieffer BL. Lack of anticipatory behavior in Gpr88 knockout mice showed by automatized home cage phenotyping. Genes Brain Behav. 2018;17:e12473.

    CAS  PubMed  Google Scholar 

  7. Thomson DM, Openshaw RL, Mitchell EJ, Kouskou M, Millan MJ, Mannoury la Cour C, et al. Impaired working memory, cognitive flexibility and reward processing in mice genetically lacking Gpr88: evidence for a key role for Gpr88 in multiple cortico-striatal-thalamic circuits. Genes Brain Behav. 2021;20:e12710.

    CAS  PubMed  Google Scholar 

  8. Ben Hamida S, Mendonca-Netto S, Arefin TM, Nasseef MT, Boulos LJ, McNicholas M, et al. Increased alcohol seeking in mice lacking gpr88 involves dysfunctional mesocorticolimbic networks. Biol Psychiatry. 2018;84:202–12.

    PubMed  PubMed Central  Google Scholar 

  9. Arefin TM, Mechling AE, Meirsman AC, Bienert T, Hubner NS, Lee HL. et al. Remodeling of sensorimotor brain connectivity in Gpr88-deficient mice. Brain Connect. 2017;7:526–40.

    PubMed  PubMed Central  Google Scholar 

  10. Jin C, Decker AM, Makhijani VH, Besheer J, Darcq E, Kieffer BL, et al. Discovery of a potent, selective, and brain-penetrant small molecule that activates the orphan receptor GPR88 and reduces alcohol intake. J Med Chem. 2018;61:6748–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Meirsman AC, Ben Hamida S, Clarke E, de Kerchove d’Exaerde A, Darcq E, Kieffer BL. GPR88 in D1R-type and D2R-type medium spiny neurons differentially regulates affective and motor behavior. eNeuro. 2019;6:0035–19.

  12. Meirsman AC, de Kerchove d’Exaerde A, Kieffer BL, Ouagazzal AM. GPR88 in A2A receptor-expressing neurons modulates locomotor response to dopamine agonists but not sensorimotor gating. Eur J Neurosci. 2017;46:2026–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Meirsman AC, Robe A, de Kerchove d’Exaerde A, Kieffer BL. GPR88 in A2AR neurons enhances anxiety-like behaviors. eNeuro. 2016;3:0202–16.

  14. Alkufri F, Shaag A, Abu-Libdeh B, Elpeleg O. Deleterious mutation in GPR88 is associated with chorea, speech delay, and learning disabilities. Neurol Genet. 2016;2:e64.

    PubMed  PubMed Central  Google Scholar 

  15. Del Zompo M, Severino G, Ardau R, Chillotti C, Piccardi M, Dib C, et al. Genome-scan for bipolar disorder with sib-pair families in the Sardinian population: a new susceptibility locus on chromosome 1p22-p21? Am J Med Genet B Neuropsychiatr Genet. 2010;153B:1200–8.

    PubMed  Google Scholar 

  16. Del Zompo M, Deleuze JF, Chillotti C, Cousin E, Niehaus D, Ebstein RP, et al. Association study in three different populations between the GPR88 gene and major psychoses. Mol Genet Genom Med. 2014;2:152–9.

    Google Scholar 

  17. Yang J, Liu A, He I, Bai Y. Bioinformatics analysis revealed novel 3’UTR variants associated with intellectual disability. Genes. 2020;11:998.

  18. Willcutt EG. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics. 2012;9:490–9.

    PubMed  PubMed Central  Google Scholar 

  19. Barkley RA. Adolescents with attention-deficit/hyperactivity disorder: an overview of empirically based treatments. J Psychiatr Pr. 2004;10:39–56.

    Google Scholar 

  20. Magnin E, Maurs C. Attention-deficit/hyperactivity disorder during adulthood. Rev Neurol. 2017;173:506–15.

    CAS  PubMed  Google Scholar 

  21. Sharma A, Couture J. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann Pharmacother. 2014;48:209–25.

    PubMed  Google Scholar 

  22. Sontag TA, Tucha O, Walitza S, Lange KW. Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. Atten Defic Hyperact Disord. 2010;2:1–20.

    PubMed  Google Scholar 

  23. Grizenko N, Lachance M, Collard V, Lageix P, Baron C, Ben AL, et al. Sensitivity of tests to assess improvement in ADHD symptomatology. Can Child Adolesc Psychiatr Rev. 2004;13:36–39.

    PubMed  PubMed Central  Google Scholar 

  24. Shaffer D, Fisher P, Lucas CP, Dulcan MK, Schwab-Stone ME. NIMH diagnostic interview schedule for children version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. J Am Acad Child Adolesc Psychiatry. 2000;39:28–38.

    CAS  PubMed  Google Scholar 

  25. Conners CK, Sitarenios G, Parker JD, Epstein JN. Revision and restandardization of the Conners Teacher Rating Scale (CTRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol. 1998;26:279–91.

    CAS  PubMed  Google Scholar 

  26. Conners CK, Sitarenios G, Parker JD, Epstein JN. The revised Conners’ Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion validity. J Abnorm Child Psychol. 1998;26:257–68.

    CAS  PubMed  Google Scholar 

  27. Achenbach TM. Manual for the Child Behavioral Checklist/4-18 and 1991 Profile. Burlington, VT: University of Vermont Department of Psychiatry; 1991.

  28. Conners CK. The computerized continuous performance test. Psychopharmacol Bull. 1985;21:891–2.

    CAS  PubMed  Google Scholar 

  29. Petrides M, Milner B. Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia. 1982;20:249–62.

    CAS  PubMed  Google Scholar 

  30. Shallice T. Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci. 1982;298:199–209.

    CAS  PubMed  Google Scholar 

  31. Taerk E, Grizenko N, Ben Amor L, Lageix P, Mbekou V, Deguzman R, et al. Catechol-O-methyltransferase (COMT) Val108/158 Met polymorphism does not modulate executive function in children with ADHD. BMC Med Genet. 2004;5:30.

    PubMed  PubMed Central  Google Scholar 

  32. Wechsler D. Manual for the Wechsler intelligence scale for children. 3rd edn. Oxford (UK): The Psychological Corporation; 1991.

  33. McNeil T, KS. McNeil-Sjostrom scale for obstetric complications. Malmö: Lund University; 1995.

  34. Ehrich M, Bocker S, van den Boom D. Multiplexed discovery of sequence polymorphisms using base-specific cleavage and MALDI-TOF MS. Nucleic Acids Res. 2005;33:e38.

    PubMed  PubMed Central  Google Scholar 

  35. Laird NM, Horvath S, Xu X. Implementing a unified approach to family-based tests of association. Genet Epidemiol. 2000;19:S36–S42.

    PubMed  Google Scholar 

  36. Haldar T, Ghosh S. Power comparison between population-based case-control studies and family-based transmission-disequilibrium tests: An empirical study. Indian J Hum Genet. 2011;17:S27–S31.

    PubMed  PubMed Central  Google Scholar 

  37. Robbins TW. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology. 2002;163:362–80.

    CAS  PubMed  Google Scholar 

  38. Dalley JW, Robbins TW. Fractionating impulsivity: neuropsychiatric implications. Nat Rev Neurosci. 2017;18:158–71.

    CAS  PubMed  Google Scholar 

  39. Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW. Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia. 1991;29:993–1006.

    CAS  PubMed  Google Scholar 

  40. Heisler JM, Morales J, Donegan JJ, Jett JD, Redus L, O’Connor JC. The attentional set shifting task: a measure of cognitive flexibility in mice. J Vis Exp. 2015;(96):51944.

  41. Pennington BF, Ozonoff S. Executive functions and developmental psychopathology. J Child Psychol Psychiatry. 1996;37:51–87.

    CAS  PubMed  Google Scholar 

  42. Bari A, Robbins TW. Animal models of ADHD. Curr Top Behav Neurosci. 2011;7:149–85.

    CAS  PubMed  Google Scholar 

  43. Wilens TE. Mechanism of action of agents used in attention-deficit/hyperactivity disorder. J Clin Psychiatry. 2006;67:32–38.

    CAS  PubMed  Google Scholar 

  44. Sengupta SM, Grizenko N, Fortier ME, TerStepanian M, Joober R. Facing the methodological challenge in dissecting the genetics of ADHD: a case for deep phenotyping and heterogenity reduction. J Can Acad Child Adolesc Psychiatry. 2020;29:188–201.

  45. Pollak Y, Dekkers TJ, Shoham R, Huizenga HM. Risk-taking behavior in attention deficit/hyperactivity disorder (ADHD): a review of potential underlying mechanisms and of interventions. Curr Psychiatry Rep. 2019;21:33.

    PubMed  Google Scholar 

  46. Luderer M, Ramos Quiroga JA, Faraone SV, Zhang James Y, Reif A. Alcohol use disorders and ADHD. Neurosci Biobehav Rev. 2021;128:648–60.

    CAS  PubMed  Google Scholar 

  47. Galet B, Ingallinesi M, Pegon J, Do Thi A, Ravassard P, Faucon Biguet N, et al. G-protein coupled receptor 88 knockdown in the associative striatum reduces psychiatric symptoms in a translational male rat model of Parkinson disease. J Psychiatry Neurosci. 2021;46:E44–E55.

    PubMed  PubMed Central  Google Scholar 

  48. Schambra UB, Duncan GE, Breese GR, Fornaretto MG, Caron MG, Fremeau RT Jr. Ontogeny of D1A and D2 dopamine receptor subtypes in rat brain using in situ hybridization and receptor binding. Neuroscience. 1994;62:65–85.

    CAS  PubMed  Google Scholar 

  49. Rahman MT, Decker AM, Langston TL, Mathews KM, Laudermilk L, Maitra R, et al. Design, synthesis, and structure-activity relationship studies of (4-Alkoxyphenyl)glycinamides and bioisosteric 1,3,4-oxadiazoles as GPR88 agonists. J Med Chem. 2020;63:14989–5012.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rahman MT, Decker AM, Laudermilk L, Maitra R, Ma W, Ben Hamida S, et al. Evaluation of amide bioisosteres leading to 1,2,3-triazole containing compounds as GPR88 agonists: design, synthesis, and structure-activity relationship studies. J Med Chem. 2021;64:12397–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dalley JW, Ersche KD. Neural circuitry and mechanisms of waiting impulsivity: relevance to addiction. Philos Trans R Soc Lond B Biol Sci. 2019;374:20180145.

    CAS  PubMed  Google Scholar 

  52. Dalley JW, Everitt BJ, Robbins TW. Impulsivity, compulsivity, and top-down cognitive control. Neuron. 2011;69:680–94.

    CAS  PubMed  Google Scholar 

  53. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2013;494:238–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nonomura S, Nishizawa K, Sakai Y, Kawaguchi Y, Kato S, Uchigashima M, et al. Monitoring and updating of action selection for goal-directed behavior through the striatal direct and indirect pathways. Neuron. 2018;99:1302–14 e1305.

    CAS  PubMed  Google Scholar 

  55. Macpherson T, Morita M, Hikida T. Striatal direct and indirect pathways control decision-making behavior. Front Psychol. 2014;5:1301.

    PubMed  PubMed Central  Google Scholar 

  56. Robinson ES, Eagle DM, Economidou D, Theobald DE, Mar AC, Murphy ER, et al. Behavioural characterisation of high impulsivity on the 5-choice serial reaction time task: specific deficits in ‘waiting’ versus ‘stopping’. Behav Brain Res. 2009;196:310–6.

    CAS  PubMed  Google Scholar 

  57. Barlow RL, Gorges M, Wearn A, Niessen HG, Kassubek J, Dalley JW, et al. Ventral striatal D2/3 receptor availability is associated with impulsive choice behavior as well as limbic corticostriatal connectivity. Int J Neuropsychopharmacol. 2018;21:705–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gainetdinov RR, Caron MG. Genetics of childhood disorders: XXIV. ADHD, part 8: hyperdopaminergic mice as an animal model of ADHD. J Am Acad Child Adolesc Psychiatry. 2001;40:380–2.

    CAS  PubMed  Google Scholar 

  59. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996;379:606–12.

    CAS  PubMed  Google Scholar 

  60. Granon S, Faure P, Changeux JP. Executive and social behaviors under nicotinic receptor regulation. Proc Natl Acad Sci USA. 2003;100:9596–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Russell VA. Neurobiology of animal models of attention-deficit hyperactivity disorder. J Neurosci Methods. 2007;161:185–98.

    PubMed  Google Scholar 

  62. Bruno KJ, Freet CS, Twining RC, Egami K, Grigson PS, Hess EJ. Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiol Dis. 2007;25:206–16.

    CAS  PubMed  Google Scholar 

  63. Siesser WB, Zhao J, Miller LR, Cheng SY, McDonald MP. Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes Brain Behav. 2006;5:282–97.

    CAS  PubMed  Google Scholar 

  64. Rahi V, Kumar P. Animal models of attention-deficit hyperactivity disorder (ADHD). Int J Dev Neurosci. 2021;81:107–24.

    PubMed  Google Scholar 

  65. Hawi Z, Cummins TD, Tong J, Johnson B, Lau R, Samarrai W, et al. The molecular genetic architecture of attention deficit hyperactivity disorder. Mol Psychiatry. 2015;20:289–97.

    CAS  PubMed  Google Scholar 

  66. Dark C, Homman-Ludiye J, Bryson-Richardson RJ. The role of ADHD associated genes in neurodevelopment. Dev Biol. 2018;438:69–83.

    CAS  PubMed  Google Scholar 

  67. Hawi Z, Cummins TD, Tong J, Arcos-Burgos M, Zhao Q, Matthews N, et al. Rare DNA variants in the brain-derived neurotrophic factor gene increase risk for attention-deficit hyperactivity disorder: a next-generation sequencing study. Mol Psychiatry. 2017;22:580–4.

    CAS  PubMed  Google Scholar 

  68. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75.

    CAS  PubMed  Google Scholar 

  69. Brinksma DM, Hoekstra PJ, de Bildt A, Buitelaar JK, van den Hoofdakker BJ, Hartman CA et al. Parental rejection in early adolescence predicts a persistent ADHD symptom trajectory across adolescence. Eur Child Adolesc Psychiatry. 2021. https://doi.org/10.1007/s00787-021-01844-0.

  70. Palladino VS, McNeill R, Reif A, Kittel-Schneider S. Genetic risk factors and gene-environment interactions in adult and childhood attention-deficit/hyperactivity disorder. Psychiatr Genet. 2019;29:63–78.

    CAS  PubMed  Google Scholar 

  71. Chen LM, Tollenaar MS, Hari Dass SA, Bouvette-Turcot AA, Pokhvisneva I, Gaudreau H, et al. Maternal antenatal depression and child mental health: moderation by genomic risk for attention-deficit/hyperactivity disorder. Dev Psychopathol. 2020;32:1810–21.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health (National Institute on Alcohol Abuse and Alcoholism, Grant No. 16658), the Canada Fund for Innovation and the Canada Research Chair to BLK. The work was also supported in part by grants from the Fonds de la recherche en santé du Québec and the Canadian Institutes of Health Research to RJ and NG. SMS is a recipient of the Young Investigator Award from the Brain and Behavior Foundation (NARSAD) and Dr. Mortimer D. Sackler Developmental Psychology Investigator Awards. We thank the staff at the animal facility of the Neurophenotyping Center of the Douglas Mental Health University Institute (Montréal, Canada). We also thank present and past members of the ADHD group for technical and clinical assistance.

Author information

Authors and Affiliations

Authors

Contributions

SBH and BLK designed and led the project, analyzed and interpreted the data and wrote the manuscript. SBH, EC, MM, EM performed mouse behavioral experiments. ED contributed to the project design and edited the manuscript. SMS, MTS, NG, and RJ conceived and designed the genetic/clinical study. SMS, MEF, MTS, NG and RJ performed and analyzed the genetic data. SMS and MTS interpreted the genetic/clinical data and edited the manuscript. All authors gave final approval of the version submitted.

Corresponding author

Correspondence to Brigitte L. Kieffer.

Ethics declarations

Competing interests

SBH, SMS, EC, MM, EM, MM, ED, MT-S, M-EF and BLK report no biomedical financial interests or potential competing interests. NG reports receiving research funding from CIHR and is a member of the advisory board for Purdue and Shire. RJ reports having received research funding from CIHR. He is on the advisory boards and speakers’ bureaus of Pfizer, Janssen Ortho, BMS, Sunovion, Otsuka, Lundbeck, Perdue and Myelin. He has received grant funding from them and from AstraZeneca and HLS. He has received honoraria from Janssen Canada, Shire, Lundbeck, Otsuka, Pfizer and from Perdue for CME presentations and royalties for Henry Stewart talks.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Hamida, S., Sengupta, S.M., Clarke, E. et al. The orphan receptor GPR88 controls impulsivity and is a risk factor for Attention-Deficit/Hyperactivity Disorder. Mol Psychiatry 27, 4662–4672 (2022). https://doi.org/10.1038/s41380-022-01738-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01738-w

Search

Quick links