Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cognitive deficits, clinical variables, and white matter microstructure in schizophrenia: a multisite harmonization study

Abstract

Cognitive deficits are among the best predictors of real-world functioning in schizophrenia. However, our understanding of how cognitive deficits relate to neuropathology and clinical presentation over the disease lifespan is limited. Here, we combine multi-site, harmonized cognitive, imaging, demographic, and clinical data from over 900 individuals to characterize a) cognitive deficits across the schizophrenia lifespan and b) the association between cognitive deficits, clinical presentation, and white matter (WM) microstructure. Multimodal harmonization was accomplished using T-scores for cognitive data, previously reported standardization methods for demographic and clinical data, and an established harmonization method for imaging data. We applied t-tests and correlation analysis to describe cognitive deficits in individuals with schizophrenia. We then calculated whole-brain WM fractional anisotropy (FA) and utilized regression-mediation analyses to model the association between diagnosis, FA, and cognitive deficits. We observed pronounced cognitive deficits in individuals with schizophrenia (p < 0.006), associated with more positive symptoms and medication dosage. Regression-mediation analyses showed that WM microstructure mediated the association between schizophrenia and language/processing speed/working memory/non-verbal memory. In addition, processing speed mediated the influence of diagnosis and WM microstructure on the other cognitive domains. Our study highlights the critical role of cognitive deficits in schizophrenia. We further show that WM is crucial when trying to understand the role of cognitive deficits, given that it explains the association between schizophrenia and cognitive deficits (directly and via processing speed).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mediation analyses utilized in the present study.
Fig. 2: Group comparisons between individuals with schizophrenia (SCZ) and healthy individuals for the eight cognitive domains investigated in the present study.

Similar content being viewed by others

References

  1. Mueser KT, Mc, Gurk SR. Schizophrenia. Lancet 2004;363:2063–72.

    PubMed  Google Scholar 

  2. Mitchell AJ, Dinan TG. Schizophrenia: a multisystem disease? J Psychopharmacol. 2010;24:5–7.

    PubMed  PubMed Central  Google Scholar 

  3. Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology 2009;23:315–36.

    PubMed  Google Scholar 

  4. Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 1998;12:426–45.

    CAS  PubMed  Google Scholar 

  5. Fioravanti M, Bianchi V, Cinti ME. Cognitive deficits in schizophrenia: an updated metanalysis of the scientific evidence. BMC Psychiatry. 2012;12:64.

    PubMed  PubMed Central  Google Scholar 

  6. Cullen B, Smith DJ, Deary IJ, Evans JJ, Pell JP. The ‘cognitive footprint’ of psychiatric and neurological conditions: cross-sectional study in the UK Biobank cohort. Acta Psychiatr Scand. 2017;135:593–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Irani F, Kalkstein S, Moberg EA, Moberg PJ. Neuropsychological performance in older patients with schizophrenia: a meta-analysis of cross-sectional and longitudinal studies. Schizophr Bull. 2011;37:1318–26.

    PubMed  Google Scholar 

  8. Puig O, Penadés R, Baeza I, Sánchez-Gistau V, De la Serna E, Fonrodona L, et al. Processing speed and executive functions predict real-world everyday living skills in adolescents with early-onset schizophrenia. Eur Child Adolesc Psychiatry. 2012;21:315–26.

    CAS  PubMed  Google Scholar 

  9. Melicher T, Horacek J, Hlinka J, Spaniel F, Tintera J, Ibrahim I, et al. White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophr Res. 2015;162:22–28.

    CAS  PubMed  Google Scholar 

  10. Ortiz-Gil J, Pomarol-Clotet E, Salvador R, Canales-Rodríguez EJ, Sarró S, Gomar JJ, et al. Neural correlates of cognitive impairment in schizophrenia. Br J Psychiatry. 2011;199:202–10.

    PubMed  Google Scholar 

  11. Kubota M, van Haren NE, Haijma SV, Schnack HG, Cahn W, Hulshoff Pol HE, et al. Association of IQ changes and progressive brain changes in patients with schizophrenia. JAMA Psychiatry. 2015;72:803–12.

    PubMed  Google Scholar 

  12. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed. 2002;15:456–67.

    PubMed  Google Scholar 

  13. Voineskos AN, Felsky D, Kovacevic N, Tiwari AK, Zai C, Chakravarty MM, et al. Oligodendrocyte genes, white matter tract integrity, and cognition in schizophrenia. Cereb Cortex. 2013;23:2044–57.

    PubMed  Google Scholar 

  14. Holleran L, Kelly S, Alloza C, Agartz I, Andreassen OA, Arango C, et al. The relationship between white matter microstructure and general cognitive ability in patients with schizophrenia and healthy participants in the ENIGMA Consortium. Am J Psychiatry. 2020;177:537–47.

    PubMed  PubMed Central  Google Scholar 

  15. Palaniyappan L, Al-Radaideh A, Mougin O, Gowland P, Liddle PF. Combined white matter imaging suggests myelination defects in visual processing regions in schizophrenia. Neuropsychopharmacology 2013;38:1808–15.

    PubMed  PubMed Central  Google Scholar 

  16. Faria AV, Crawford J, Ye C, Hsu J, Kenkare A, Schretlen D, et al. Relationship between neuropsychological behavior and brain white matter in first-episode psychosis. Schizophr Res. 2019;208:49–54.

    PubMed  PubMed Central  Google Scholar 

  17. Dickinson D, Ramsey ME, Gold JM. Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch Gen Psychiatry. 2007;64:532–42.

    PubMed  Google Scholar 

  18. Wang X, Lu F, Duan X, Han S, Guo X, Yang M, et al. Frontal white matter abnormalities reveal the pathological basis underlying negative symptoms in antipsychotic-naïve, first-episode patients with adolescent-onset schizophrenia: evidence from multimodal brain imaging. Schizophr Res. 2020;222:258–66.

    PubMed  Google Scholar 

  19. Gawlowska-Sawosz M, Pawelczyk A, Gebski P, Pawelczyk T, Strzelecki D, Rabe-Jablonska J. Evaluation of white matter structure changes, as assessed in tractography, and cognitive dysfunctions in patients with early onset schizophrenia and their first-degree relatives. Psychiatr Pol. 2017;51:735–50.

    PubMed  Google Scholar 

  20. Roalf DR, Ruparel K, Verma R, Elliott MA, Gur RE, Gur RC. White matter organization and neurocognitive performance variability in schizophrenia. Schizophr Res. 2013;143:172–8.

    PubMed  Google Scholar 

  21. Kochunov P, Rowland LM, Fieremans E, Veraart J, Jahanshad N, Eskandar G, et al. Diffusion-weighted imaging uncovers likely sources of processing-speed deficits in schizophrenia. Proc Natl Acad Sci USA. 2016;113:13504–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Abdolalizadeh A, Ostadrahimi H, Mohajer B, Darvishi A, Sattarian M, Bayani Ershadi AS, et al. White matter microstructural properties associated with impaired attention in chronic schizophrenia: a multi-center study. Psychiatry Res Neuroimaging. 2020;302:111105.

    PubMed  Google Scholar 

  23. Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C, et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry. 2018;23:1261–9.

    CAS  PubMed  Google Scholar 

  24. Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry. 2020;10:100.

    PubMed  PubMed Central  Google Scholar 

  25. Cetin Karayumak S, Bouix S, Ning L, James A, Crow T, Shenton M, et al. Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters. Neuroimage 2019;184:180–200.

    PubMed  Google Scholar 

  26. Mirzaalian H, Ning L, Savadjiev P, Pasternak O, Bouix S, Michailovich O, et al. Multi-site harmonization of diffusion MRI data in a registration framework. Brain Imaging Behav. 2018;12:284–95.

    PubMed  PubMed Central  Google Scholar 

  27. Cetin-Karayumak S, Di Biase MA, Chunga N, Reid B, Somes N, Lyall AE, et al. White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study. Mol Psychiatry. 2020;25:3208–19.

  28. Seitz J, Cetin-Karayumak S, Lyall A, Pasternak O, Baxi M, Vangel M, et al. Investigating Sexual Dimorphism of Human White Matter in a Harmonized, Multisite Diffusion Magnetic Resonance Imaging Study. Cereb Cortex. 2021;31:201–12.

  29. Seitz-Holland J, Cetin-Karayumak S, Wojcik JD, Lyall A, Levitt J, Shenton ME, et al. Elucidating the relationship between white matter structure, demographic, and clinical variables in schizophrenia-a multicenter harmonized diffusion tensor imaging study. Mol Psychiatry. 2021;26:5357–70.

  30. Elad D, Cetin-Karayumak S, Zhang F, Cho KIK, Lyall AE, Seitz-Holland J, et al. Improving the predictive potential of diffusion MRI in schizophrenia using normative models-Towards subject-level classification. Hum Brain Mapp. 2021;42:4658–70.

    PubMed  PubMed Central  Google Scholar 

  31. Ellison-Wright I, Nathan PJ, Bullmore ET, Zaman R, Dudas RB, Agius M, et al. Distribution of tract deficits in schizophrenia. BMC Psychiatry. 2014;14:99.

    PubMed  PubMed Central  Google Scholar 

  32. Kanaan RA, Borgwardt S, McGuire PK, Craig MC, Murphy DG, Picchioni M, et al. Microstructural organization of cerebellar tracts in schizophrenia. Biol Psychiatry. 2009;66:1067–9.

    PubMed  Google Scholar 

  33. Karlsgodt KH, van Erp TG, Poldrack RA, Bearden CE, Nuechterlein KH, Cannon TD. Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biol Psychiatry. 2008;63:512–8.

    PubMed  Google Scholar 

  34. Voineskos AN, Foussias G, Lerch J, Felsky D, Remington G, Rajji TK, et al. Neuroimaging evidence for the deficit subtype of schizophrenia. JAMA Psychiatry. 2013;70:472–80.

    PubMed  Google Scholar 

  35. Alloza C, Cox SR, Duff B, Semple SI, Bastin ME, Whalley HC, et al. Information processing speed mediates the relationship between white matter and general intelligence in schizophrenia. Psychiatry Res. Neuroimaging 2016;254:26–33.

    PubMed  Google Scholar 

  36. Kochunov P, Coyle TR, Rowland LM, Jahanshad N, Thompson PM, Kelly S, et al. Association of white matter with core cognitive deficits in patients with schizophrenia. JAMA Psychiatry. 2017;74:958–66.

    PubMed  PubMed Central  Google Scholar 

  37. Zhang S, Arfanakis K. Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences. Neuroimage 2018;172:40–50.

    PubMed  Google Scholar 

  38. Woerner MG, Mannuzza, S JMK. Anchoring the brief psychiatric rating scale (an aid to improve reliability). Psychopharmacol Bull. 1988;24:112–7.

    CAS  PubMed  Google Scholar 

  39. Kay SR, Fizbin A, Lindenmayer JP, Opler LA. Positive and negative syndromes in schizophrenia as a function of chronicity. Acta Psychiatr Scand. 1986;74:507–18.

    CAS  PubMed  Google Scholar 

  40. Lehman AF, Steinwachs DM. Translating research into practice: the Schizophrenia Patient Outcomes Research Team (PORT) treatment recommendations. Schizophr Bull. 1998;24:1–10.

    CAS  PubMed  Google Scholar 

  41. Buchanan RW, Kreyenbuhl J, Kelly DL, Noel JM, Boggs DL, Fischer BA, et al. The 2009 schizophrenia PORT psychopharmacological treatment recommendations and summary statements. Schizophr Bull. 2010;36:71–93.

    PubMed  Google Scholar 

  42. Stohl A. The antipsychotic treatment guide. The Psychopharmacology Reference Card. McLean Hospital, Harvard Medical School; 2001.

  43. Lehman AF, Kreyenbuhl J, Buchanan RW, Dickerson FB, Dixon LB, Goldberg R, et al. The Schizophrenia Patient Outcomes Research Team (PORT): updated treatment recommendations 2003. Schizophrenia Bulletin. 2004;30:193–217.

    PubMed  Google Scholar 

  44. Sohler NL, Walkup J, McAlpine D, Boyer C, Olfson M. Antipsychotic dosage at hospital discharge and outcomes among persons with schizophrenia. Psychiatr Serv. 2003;54:1258–63.

    PubMed  Google Scholar 

  45. Wechsler D. Wechsler Adult Intelligence Scale. 3rd ed. San Antonio, Texas: Psychological Corporation; 1997.

  46. Wilkinson GS, Robertson GJ. WRAT 3 administration manual. Wilmington, DE: Jastak Associates; 1993.

  47. Wilkinson GS, Robertson GJ. Wide range achievement test. 4th ed. Lutz, FL: Psychological Assessment Resources; 2006.

  48. Giuliano AJ, Li H, Mesholam-Gately RI, Sorenson SM, Woodberry KA, Seidman LJ. Neurocognition in the psychosis risk syndrome: a quantitative and qualitative review. Curr Pharm Des. 2012;18:399–415.

    CAS  PubMed  Google Scholar 

  49. Nuechterlein KH, Green MF. MATRICS consensus cognitive battery. Los Angeles, MATRICS Assessment, Inc, 2006.

  50. Meehl PE. Nuisance variables and the ex post facto design. In: Radner M, Winokur S, editors. Minnesota studies in the philosophy of science: vol. IV. Analyses of theories and methods of physics and psychology. Minneapolis: University of Minnesota Press; 1970, pp 373–402.

  51. Dennis M, Francis DJ, Cirino PT, Schachar R, Barnes MA, Fletcher JM. Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. J Int Neuropsychol Soc. 2009;15:331–43.

    PubMed  PubMed Central  Google Scholar 

  52. Hayes AF, Rockwood NJ. Regression-based statistical mediation and moderation analysis in clinical research: observations, recommendations, and implementation. Behav Res Ther. 2017;98:39–57.

    PubMed  Google Scholar 

  53. Barnett JH, Salmond CH, Jones PB, Sahakian BJ. Cognitive reserve in neuropsychiatry. Psychol Med. 2006;36:1053–64.

    CAS  PubMed  Google Scholar 

  54. Leeson VC, Sharma P, Harrison M, Ron MA, Barnes TR, Joyce EM. IQ trajectory, cognitive reserve, and clinical outcome following a first episode of psychosis: a 3-year longitudinal study. Schizophr Bull. 2011;37:768–77.

    PubMed  Google Scholar 

  55. de la Serna E, Andres-Perpina S, Puig O, Baeza I, Bombin I, Bartres-Faz D, et al. Cognitive reserve as a predictor of two year neuropsychological performance in early onset first-episode schizophrenia. Schizophr Res. 2013;143:125–31.

    PubMed  Google Scholar 

  56. Amoretti S, Bernardo M, Bonnin CM, Bioque M, Cabrera B, Mezquida G, et al. The impact of cognitive reserve in the outcome of first-episode psychoses: 2-year follow-up study. Eur Neuropsychopharmacol. 2016;26:1638–48.

    CAS  PubMed  Google Scholar 

  57. Herrero P, Contador I, Stern Y, Fernández-Calvo B, Sánchez A, Ramos F. Influence of cognitive reserve in schizophrenia: a systematic review. Neurosci Biobehav Rev. 2020;108:149–59.

    PubMed  Google Scholar 

  58. Gur RC, Calkins ME, Satterthwaite TD, Ruparel K, Bilker WB, Moore TM, et al. Neurocognitive growth charting in psychosis spectrum youths. JAMA Psychiatry. 2014;71:366–74.

    PubMed  Google Scholar 

  59. Costa LG, Massuda R, Pedrini M, Passos IC, Czepielewski LS, Brietzke E, et al. Functioning in early and late stages of schizophrenia. Trends psychiatry Psychother. 2014;36:209–13.

    PubMed  Google Scholar 

  60. Yogaratnam J, Biswas N, Vadivel R, Jacob R. Metabolic complications of schizophrenia and antipsychotic medications-an updated review. East Asian Arch Psychiatry. 2013;23:21–28.

    CAS  PubMed  Google Scholar 

  61. Koutsouleris N, Davatzikos C, Borgwardt S, Gaser C, Bottlender R, Frodl T, et al. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull. 2014;40:1140–53.

    PubMed  Google Scholar 

  62. Alloza C, Cox SR, Blesa Cabez M, Redmond P, Whalley HC, Ritchie SJ, et al. Polygenic risk score for schizophrenia and structural brain connectivity in older age: a longitudinal connectome and tractography study. Neuroimage 2018;183:884–96.

    CAS  PubMed  Google Scholar 

  63. Cropley VL, Klauser P, Lenroot RK, Bruggemann J, Sundram S, Bousman C, et al. Accelerated gray and white matter deterioration with age in schizophrenia. Am J Psychiatry. 2017;174:286–95.

    PubMed  Google Scholar 

  64. Shahab S, Mulsant BH, Levesque ML, Calarco N, Nazeri A, Wheeler AL, et al. Brain structure, cognition, and brain age in schizophrenia, bipolar disorder, and healthy controls. Neuropsychopharmacology 2019;44:898–906.

    PubMed  Google Scholar 

  65. Elliott ML, Belsky DW, Knodt AR, Ireland D, Melzer TR, Poulton R, et al. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol Psychiatry. 2019;26:3829–38.

  66. Cohen CI, Murante T. A prospective analysis of the role of cognition in three models of aging and schizophrenia. Schizophr Res. 2018;196:22–28.

    PubMed  Google Scholar 

  67. Lee J, Green MF, Nuechterlein KH, Swerdlow NR, Greenwood TA, Hellemann GS, et al. The effects of age and sex on cognitive impairment in schizophrenia: Findings from the Consortium on the Genetics of Schizophrenia (COGS) study. PLoS One. 2020;15:e0232855.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Seitz J, Kubicki M, Jacobs EG, Cherkerzian S, Weiss BK, Papadimitriou G, et al. Impact of sex and reproductive status on memory circuitry structure and function in early midlife using structural covariance analysis. Hum brain Mapp. 2019;40:1221–33.

    PubMed  Google Scholar 

  69. Gur RC, Gur RE. Complementarity of sex differences in brain and behavior: from laterality to multimodal neuroimaging. J Neurosci Res. 2017;95:189–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Giedd JN, Raznahan A, Mills KL, Lenroot RK. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol Sex Differences. 2012;3:19.

    Google Scholar 

  71. Krysta K, Krzystanek M, Jakuszkowiak-Wojten K, Węgielnik-Gałuszko M, Wilkowska A, Wiglusz M, et al. Infulence of sex hormones and inflammatory processes on cognition in schizophrenia. Psychiatr Danub. 2019;31:517–9.

    CAS  PubMed  Google Scholar 

  72. Li AWY, Hui CLM, Lee EHM, Chang WC, Chan SKW, Chen EYH. Gender differences in correlates of cognition in first-episode psychosis. Psychiatry Res. 2019;271:412–20.

    PubMed  Google Scholar 

  73. Ko YH, Joe SH, Cho W, Park JH, Lee JJ, Jung IK, et al. Estrogen, cognitive function and negative symptoms in female schizophrenia. Neuropsychobiology 2006;53:169–75.

    CAS  PubMed  Google Scholar 

  74. Hodgetts S, Hausmann M, Weis S. High estradiol levels improve false memory rates and meta-memory in highly schizotypal women. Psychiatry Res. 2015;229:708–14.

    CAS  PubMed  Google Scholar 

  75. Ochoa S, Usall J, Cobo J, Labad X, Kulkarni J. Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophr Res Treat. 2012;2012:916198.

    Google Scholar 

  76. Dominguez Mde G, Viechtbauer W, Simons CJ, van Os J, Krabbendam L. Are psychotic psychopathology and neurocognition orthogonal? A systematic review of their associations. Psychol Bull. 2009;135:157–71.

    PubMed  Google Scholar 

  77. Gu C, Zhang Y, Wei F, Cheng Y, Cao Y, Hou H. Magnetic resonance imaging DTI-FT study on schizophrenic patients with typical negative first symptoms. Exp therapeutic Med. 2016;12:1450–4.

    Google Scholar 

  78. Lee JS, Han K, Lee SK, Seok JH, Kim JJ. Altered structural connectivity and trait anhedonia in patients with schizophrenia. Neurosci Lett. 2014;579:7–11.

    CAS  PubMed  Google Scholar 

  79. Robison AJ, Thakkar KN, Diwadkar VA. Cognition and reward circuits in schizophrenia: synergistic, not separate. Biol Psychiatry. 2020;87:204–14.

    CAS  PubMed  Google Scholar 

  80. Keefe RS, Seidman LJ, Christensen BK, Hamer RM, Sharma T, Sitskoorn MM, et al. Comparative effect of atypical and conventional antipsychotic drugs on neurocognition in first-episode psychosis: a randomized, double-blind trial of olanzapine versus low doses of haloperidol. Am J Psychiatry. 2004;161:985–95.

    PubMed  Google Scholar 

  81. Seidman LJ, Buka SL, Goldstein JM, Tsuang MT. Intellectual decline in schizophrenia: evidence from a prospective birth cohort 28 year follow-up study. J Clin Exp Neuropsychol. 2006;28:225–42.

    PubMed  Google Scholar 

  82. Chen C, Jiang W, Zhong N, Wu J, Jiang H, Du J, et al. Impaired processing speed and attention in first-episode drug naive schizophrenia with deficit syndrome. Schizophr Res. 2014;159:478–84.

    PubMed  Google Scholar 

  83. Tishler TA, Bartzokis G, Lu PH, Raven EP, Khanoyan M, Kirkpatrick CJ, et al. Abnormal trajectory of intracortical myelination in schizophrenia implicates white matter in disease pathophysiology and the therapeutic mechanism of action of antipsychotics. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:454–62.

    PubMed  Google Scholar 

  84. Andreasen NC, Pressler M, Nopoulos P, Miller D, Ho BC. Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biol Psychiatry. 2010;67:255–62.

    CAS  PubMed  Google Scholar 

  85. Bathelt J, Johnson A, Zhang M, Astle DE. The cingulum as a marker of individual differences in neurocognitive development. Sci Rep. 2019;9:2281.

    PubMed  PubMed Central  Google Scholar 

  86. Jacobs HI, Leritz EC, Williams VJ, Van Boxtel MP, van der Elst W, Jolles J, et al. Association between white matter microstructure, executive functions, and processing speed in older adults: the impact of vascular health. Hum Brain Mapp. 2013;34:77–95.

    PubMed  Google Scholar 

  87. Seitz J, Zuo JX, Lyall AE, Makris N, Kikinis Z, Bouix S, et al. Tractography analysis of 5 white matter bundles and their clinical and cognitive correlates in early-course schizophrenia. Schizophr Bull. 2016;42:762–71.

  88. Molina V, Lubeiro A, Soto O, Rodriguez M, Alvarez A, Hernandez R, et al. Alterations in prefrontal connectivity in schizophrenia assessed using diffusion magnetic resonance imaging. Prog Neuropsychopharmacol Biol Psychiatry. 2017;76:107–15.

    PubMed  Google Scholar 

  89. Xiao Y, Sun H, Shi S, Jiang D, Tao B, Zhao Y, et al. White matter abnormalities in never-treated patients with long-term schizophrenia. Am J Psychiatry. 2018;175:1129–36.

  90. Kristensen TD, Mandl RCW, Raghava JM, Jessen K, Jepsen JRM, Fagerlund B, et al. Widespread higher fractional anisotropy associates to better cognitive functions in individuals at ultra-high risk for psychosis. Hum Brain Mapp. 2019;40:5185–201.

    PubMed  PubMed Central  Google Scholar 

  91. Ohoshi Y, Takahashi S, Yamada S, Ishida T, Tsuda K, Tsuji T, et al. Microstructural abnormalities in callosal fibers and their relationship with cognitive function in schizophrenia: a tract-specific analysis study. Brain Behav. 2019;9:e01357.

    PubMed  PubMed Central  Google Scholar 

  92. Hegde RR, Kelly S, Lutz O, Guimond S, Karayumak SC, Mike L, et al. Association of white matter microstructure and extracellular free-water with cognitive performance in the early course of schizophrenia. Psychiatry Res Neuroimaging. 2020;305:111159.

    PubMed  Google Scholar 

  93. Hidese S, Ota M, Matsuo J, Ishida I, Hiraishi M, Teraishi T, et al. Association between the scores of the Japanese version of the Brief Assessment of Cognition in Schizophrenia and whole-brain structure in patients with chronic schizophrenia: a voxel-based morphometry and diffusion tensor imaging study. Psychiatry Clin Neurosci. 2017;71:826–35.

    PubMed  Google Scholar 

  94. Liu X, Lai Y, Wang X, Hao C, Chen L, Zhou Z, et al. Reduced white matter integrity and cognitive deficit in never-medicated chronic schizophrenia: a diffusion tensor study using TBSS. Behav Brain Res. 2013;252:157–63.

    PubMed  Google Scholar 

  95. Nestor PG, Kubicki M, Nakamura M, Niznikiewicz M, Levitt JJ, Shenton ME, et al. Neuropsychological variability, symptoms, and brain imaging in chronic schizophrenia. Brain Imaging Behav. 2013;7:68–76.

    PubMed  Google Scholar 

  96. Knochel C, Schmied C, Linden DE, Stablein M, Prvulovic D, de AdCL, et al. White matter abnormalities in the fornix are linked to cognitive performance in SZ but not in BD disorder: an exploratory analysis with DTI deterministic tractography. J Affect Disord. 2016;201:64–78.

    PubMed  Google Scholar 

  97. Gómez-Gastiasoro A, Zubiaurre-Elorza L, Peña J, Ibarretxe-Bilbao N, Rilo O, Schretlen DJ, et al. Altered frontal white matter asymmetry and its implications for cognition in schizophrenia: a tractography study. Neuroimage Clin. 2019;22:101781.

    PubMed  PubMed Central  Google Scholar 

  98. Friston KJ. The disconnection hypothesis. Schizophrenia Res. 1998;30:115–25.

    CAS  Google Scholar 

  99. Zhang J, Cheng W, Liu Z, Zhang K, Lei X, Yao Y, et al. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain. 2016;139:2307–21.

    PubMed  Google Scholar 

  100. Takano Y, Aoki Y, Yahata N, Kawakubo Y, Inoue H, Iwashiro N, et al. Neural basis for inferring false beliefs and social emotions in others among individuals with schizophrenia and those at ultra-high risk for psychosis. Psychiatry Res Neuroimaging. 2017;259:34–41.

    PubMed  Google Scholar 

  101. Wojtalik JA, Smith MJ, Keshavan MS, Eack SM. A systematic and meta-analytic review of neural correlates of functional outcome in schizophrenia. Schizophr Bull. 2017;43:1329–47.

    PubMed  PubMed Central  Google Scholar 

  102. Furuichi A, Kawasaki Y, Takahashi T, Nakamura K, Tanino R, Noguchi K, et al. Altered neural basis of self-reflective processing in schizophrenia: An fMRI study. Asian J Psychiatr. 2019;45:53–60.

    PubMed  Google Scholar 

  103. Karbasforoushan H, Duffy B, Blackford JU, Woodward ND. Processing speed impairment in schizophrenia is mediated by white matter integrity. Psychol Med. 2015;45:109–20.

    CAS  PubMed  Google Scholar 

  104. Zhang X, Yang M, Du X, Liao W, Chen D, Fan F, et al. Glucose disturbances, cognitive deficits and white matter abnormalities in first-episode drug-naive schizophrenia. Mol Psychiatry. 2020;25:3220–30.

  105. Roalf DR, Gur RE, Verma R, Parker WA, Quarmley M, Ruparel K, et al. White matter microstructure in schizophrenia: associations to neurocognition and clinical symptomatology. Schizophr Res. 2015;161:42–49.

    PubMed  Google Scholar 

  106. Gas C, Canales-Rodríguez EJ, Radua J, Abasolo N, Cortés MJ, Salvadó E, et al. Discoidin domain receptor 1 gene variants are associated with decreased white matter fractional anisotropy and decreased processing speed in schizophrenia. J Psychiatr Res. 2019;110:74–82.

    PubMed  Google Scholar 

  107. Poletti S, Mazza E, Bollettini I, Falini A, Smeraldi E, Cavallaro R, et al. The COMT Val158Met polymorphism moderates the association between cognitive functions and white matter microstructure in schizophrenia. Psychiatr Genet. 2016;26:193–202.

    CAS  PubMed  Google Scholar 

  108. Kuswanto CN, Sum MY, Qiu A, Sitoh YY, Liu J, Sim K. The impact of genome wide supported microRNA-137 (MIR137) risk variants on frontal and striatal white matter integrity, neurocognitive functioning, and negative symptoms in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2015;168b:317–26.

    PubMed  Google Scholar 

  109. Rigucci S, Rossi-Espagnet C, Ferracuti S, De Carolis A, Corigliano V, Carducci F, et al. Anatomical substrates of cognitive and clinical dimensions in first episode schizophrenia. Acta Psychiatr Scand. 2013;128:261–70.

    CAS  PubMed  Google Scholar 

  110. Brébion G, Villalta-Gil V, Autonell J, Cervilla J, Dolz M, Foix A, et al. Cognitive correlates of verbal memory and verbal fluency in schizophrenia, and differential effects of various clinical symptoms between male and female patients. Schizophr Res. 2013;147:81–85.

    PubMed  Google Scholar 

  111. Subramaniam K, Gill J, Fisher M, Mukherjee P, Nagarajan S, Vinogradov S. White matter microstructure predicts cognitive training-induced improvements in attention and executive functioning in schizophrenia. Schizophr Res. 2018;193:276–83.

    PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding provided by the following National Institutes of Health (NIH) grants: R01MH102377, K24MH110807 (PI: MK), R01MH119222 (PI: YR), R03 MH110745, K01 MH115247–01A1 (PI: AEL), VA Merit Award and U01 MH109977 (PI: MES), R01MH108574 (PI: OP), MRC G0500092 (PI: AJ), R01MH076995 (PI: PS), P50MH080173 (PI: AKM), 1R01 MH102318-01A1 (PI: RWB), R01MH092440, MH078113 (PI: MK), MH077851 (PI: CT), MH077945 (PI: GP), MH077862 (PI: JS), 1R01MH102324-01A1 (PI: AV). We also acknowledge funding provided by the Swiss National Science Foundation (SNF) grant 152619 (PI: SW), National Research Foundation of Korea (NRF) grant NRF-2012R1A1A1006514 (PI: JL), the University of Cincinnati Schizophrenia Research Fund (JAS), BWH Program for Interdisciplinary Neuroscience (through a gift from Lawrence and Tina Rand (PI: SC-K), the Harvard Medical School Livingston Fellowship Award (PI: JS-H), and BBRF NARSAD Young Investigator grants (PI: SC-K, PI: Dr. AEL, PI: JS-H [funded by Mary and John Osterhaus and the Brain & Behavior Research Foundation]).

Author information

Authors and Affiliations

Authors

Contributions

JS-H: study design, data analysis and interpretation, visualization, writing original draft; JDW: data curation, methodology, data interpretation, writing original draft; SC-K: data curation, methodology, data interpretation, visualization, writing original draft; AEL: data interpretation, writing review and editing; OP: data interpretation, writing review and editing; YR: data curation, methodology, data interpretation, writing review and editing; MV: statistical supervision, writing review and editing; GP: funding acquisition original study, data collection, writing review and editing; CT: funding acquisition original study, data collection, writing review and editing; JAS: funding acquisition original study, data collection, writing review and editing; BAC: data collection, writing review and editing; DAS: data collection, writing review and editing; PVV: data collection, writing review and editing; KS: data collection, writing review and editing; SW: funding acquisition original study, data collection, writing review and editing; JL: funding acquisition original study, data collection, writing review and editing; TC: data collection, writing review and editing; AJ: funding acquisition original study, data collection, writing review and editing; AV: funding acquisition original study, data collection, writing review and editing; RWB: funding acquisition original study, data collection, writing review and editing; PRS: funding acquisition original study, data collection, writing review and editing; AKM: funding acquisition original study, data collection, writing review and editing; SK: data interpretation, writing review and editing; MES: funding acquisition original study, data collection, data interpretation, writing review and editing, MSK: funding acquisition original study, data collection, data interpretation, writing review and editing; RIMG: study design, methodology, data interpretation, writing original draft; MK: funding acquisition, study design, data interpretation, writing original draft

Corresponding author

Correspondence to Johanna Seitz-Holland.

Ethics declarations

Competing interests

JAS consults to VeraSci. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seitz-Holland, J., Wojcik, J.D., Cetin-Karayumak, S. et al. Cognitive deficits, clinical variables, and white matter microstructure in schizophrenia: a multisite harmonization study. Mol Psychiatry 27, 3719–3730 (2022). https://doi.org/10.1038/s41380-022-01731-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01731-3

This article is cited by

Search

Quick links