Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cognitive performance protects against Alzheimer’s disease independently of educational attainment and intelligence

Abstract

Mendelian-randomization (MR) studies using large-scale genome-wide association studies (GWAS) have identified causal association between educational attainment and Alzheimer’s disease (AD). However, the underlying mechanisms are still required to be explored. Here, we conduct univariable and multivariable MR analyses using large-scale educational attainment, cognitive performance, intelligence and AD GWAS datasets. In stage 1, we found significant causal effects of educational attainment on cognitive performance (beta = 0.907, 95% confidence interval (CI): 0.884–0.930, P < 1.145E−299), and vice versa (beta = 0.571, 95% CI: 0.557–0.585, P < 1.145E−299). In stage 2, we found that both increase in educational attainment (odds ratio (OR) = 0.72, 95% CI: 0.66–0.78, P = 1.39E−14) and cognitive performance (OR = 0.69, 95% CI: 0.64–0.75, P = 1.78E−20) could reduce the risk of AD. In stage 3, we found that educational attainment may protect against AD dependently of cognitive performance (OR = 1.07, 95% CI: 0.90–1.28, P = 4.48E−01), and cognitive performance may protect against AD independently of educational attainment (OR = 0.69, 95% CI: 0.53–0.89, P = 5.00E−03). In stage 4, we found significant causal effects of cognitive performance on intelligence (beta = 0.907, 95% CI: 0.877–0.938, P < 1.145E−299), and vice versa (beta = 0.957, 95% CI: 0.937–0.978, P < 1.145E−299). In stage 5, we identified that cognitive performance may protect against AD independently of intelligence (OR = 0.74, 95% CI: 0.61–0.90, P = 2.00E−03), and intelligence may protect against AD dependently of cognitive performance (OR = 1.17, 95% CI: 0.40–3.43, P = 4.48E−01). Collectively, our univariable and multivariable MR analyses highlight the protective role of cognitive performance in AD independently of educational attainment and intelligence. In addition to the intelligence, we extend the mechanisms underlying the associations of educational attainment with AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The flow chart about the MR study design.
Fig. 2: Individual estimates about the causal effect of educational attainment on AD using IVW method.
Fig. 3: Individual estimates about the causal effect of cognitive performance on AD using IVW method.

Similar content being viewed by others

Data availability

All relevant data are within the paper. The authors confirm that all data underlying the findings are either fully available without restriction through consortia websites, or may be made available from consortia upon request. AD GWAS dataset is available at https://www.niagads.org/datasets/ng00075; Educational attainment and cognitive performance GWAS datasets are available at https://www.thessgac.org/data; Intelligence GWAS dataset is available at https://ctg.cncr.nl/software/summary_statistics.

Code availability

Two-sample MR analyses and multivariable MR analysis was conducted using MendelianRandomization (version 0.5.0) packages in R. Codes associated with the current submission can be requested by contacting the corresponding author.

References

  1. Liu G, Yao L, Liu J, Jiang Y, Ma G, Chen Z, et al. Cardiovascular disease contributes to Alzheimer’s disease: evidence from large-scale genome-wide association studies. Neurobiol Aging. 2014;35:786–92.

    Article  PubMed  Google Scholar 

  2. Hu Y, Sun JY, Zhang Y, Zhang H, Gao S, Wang T, et al. rs1990622 variant associates with Alzheimer’s disease and regulates TMEM106B expression in human brain tissues. BMC Med. 2021;19:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Evans DA, Hebert LE, Beckett LA, Scherr PA, Albert MS, Chown MJ, et al. Education and other measures of socioeconomic status and risk of incident Alzheimer disease in a defined population of older persons. Arch Neurol. 1997;54:1399–405.

    Article  CAS  PubMed  Google Scholar 

  4. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10:819–28.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, et al. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol. 2002;156:445–53.

    Article  PubMed  Google Scholar 

  6. Almeida RP, Schultz SA, Austin BP, Boots EA, Dowling NM, Gleason CE, et al. Effect of cognitive reserve on age-related changes in cerebrospinal fluid biomarkers of Alzheimer disease. JAMA Neurol. 2015;72:699–706.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Munoz DG, Ganapathy GR, Eliasziw M, Hachinski V. Educational attainment and socioeconomic status of patients with autopsy-confirmed Alzheimer disease. Arch Neurol. 2000;57:85–89.

    Article  CAS  PubMed  Google Scholar 

  8. Teri L, McCurry SM, Edland SD, Kukull WA, Larson EB. Cognitive decline in Alzheimer’s disease: a longitudinal investigation of risk factors for accelerated decline. J Gerontol A Biol Sci Med Sci. 1995;50A:M49–M55.

    Article  CAS  PubMed  Google Scholar 

  9. Scarmeas N, Albert SM, Manly JJ, Stern Y. Education and rates of cognitive decline in incident Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2006;77:308–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R. Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA. 1994;271:1004–10.

    Article  CAS  PubMed  Google Scholar 

  11. Contador I, Stern Y, Bermejo-Pareja F, Sanchez-Ferro A, Benito-Leon J. Is educational attainment associated with increased risk of mortality in people with dementia? A population-based study. Curr Alzheimer Res. 2017;14:571–6.

    Article  CAS  PubMed  Google Scholar 

  12. van Oijen M, de Jong FJ, Hofman A, Koudstaal PJ, Breteler MM. Subjective memory complaints, education, and risk of Alzheimer’s disease. Alzheimers Dement. 2007;3:92–97.

    Article  PubMed  Google Scholar 

  13. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303:1832–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43:429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41:1094–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41:1088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011;43:436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Larsson SC, Traylor M, Malik R, Dichgans M, Burgess S, Markus HS. Modifiable pathways in Alzheimer’s disease: Mendelian randomisation analysis. BMJ. 2017;359:j5375.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Meng L, Shen L, Ji HF. Impact of modifiable risk factors on Alzheimer’s disease: a two-sample Mendelian randomization study. Neurobiol Aging. 2020;91:167 e111–167 e119.

    Article  Google Scholar 

  22. Andrews SJ, Fulton-Howard B, O’Reilly P, Marcora E, Goate AM. Causal associations between modifiable risk factors and the Alzheimer’s phenome. Ann Neurol. 2021;89:54–65.

    Article  CAS  PubMed  Google Scholar 

  23. Anderson EL, Howe LD, Wade KH, Ben-Shlomo Y, Hill WD, Deary IJ, et al. Education, intelligence and Alzheimer’s disease: evidence from a multivariable two-sample Mendelian randomization study. Int J Epidemiol. 2020;49:1163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sternberg RJ. Increasing fluid intelligence is possible after all. Proc Natl Acad Sci USA. 2008;105:6791–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, de Leeuw CA, et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat Genet. 2018;50:912–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JRI, Krapohl E, et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat Genet. 2017;49:1107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trampush JW, Yang ML, Yu J, Knowles E, Davies G, Liewald DC, et al. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol Psychiatry. 2017;22:336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun. 2018;9:2098.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Barnes DE, Santos-Modesitt W, Poelke G, Kramer AF, Castro C, Middleton LE, et al. The Mental Activity and eXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Intern Med. 2013;173:797–804.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Falck RS, Davis JC, Best JR, Crockett RA, Liu-Ambrose T. Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiol Aging. 2019;79:119–30.

    Article  PubMed  Google Scholar 

  32. Lovden M, Fratiglioni L, Glymour MM, Lindenberger U, Tucker-Drob EM. Education and cognitive functioning across the life span. Psychol Sci Public Interest. 2020;21:6–41.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guerra-Carrillo B, Katovich K, Bunge SA. Does higher education hone cognitive functioning and learning efficacy? Findings from a large and diverse sample. PLoS ONE. 2017;12:e0182276.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wilson RS, Hebert LE, Scherr PA, Barnes LL, Mendes de Leon CF, Evans DA. Educational attainment and cognitive decline in old age. Neurology. 2009;72:460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu G, Jin S, Jiang Q. Interleukin-6 receptor and inflammatory bowel disease: a Mendelian Randomization Study. Gastroenterology. 2019;156:823–4.

    Article  PubMed  Google Scholar 

  36. Liu G, Zhao Y, Jin S, Hu Y, Wang T, Tian R, et al. Circulating vitamin E levels and Alzheimer’s disease: a Mendelian randomization study. Neurobiol Aging. 2018;72:189 e181–189 e189.

    Article  Google Scholar 

  37. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature. 2016;533:539–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trampush JW, Yang MLZ, Yu J, Knowles E, Davies G, Liewald DC, et al. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol Psychiatry. 2017;22:1651–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377–89.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46:1734–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bowden J, Davey, Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review. Res Synth Methods. 2019;10:486–96.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Staff RT, Hogan MJ, Williams DS, Whalley LJ. Intellectual engagement and cognitive ability in later life (the “use it or lose it” conjecture): longitudinal, prospective study. BMJ. 2018;363:k4925.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wilson RS, Leurgans SE, Boyle PA, Bennett DA. Cognitive decline in prodromal Alzheimer disease and mild cognitive impairment. Arch Neurol. 2011;68:351–6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Solomon A, Turunen H, Ngandu T, Peltonen M, Levalahti E, Helisalmi S, et al. Effect of the apolipoprotein E genotype on cognitive change during a multidomain lifestyle intervention: a subgroup analysis of a randomized clinical trial. JAMA Neurol. 2018;75:462–70.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Panza GA, Taylor BA, MacDonald HV, Johnson BT, Zaleski AL, Livingston J, et al. Can exercise improve cognitive symptoms of Alzheimer’s disease? J Am Geriatr Soc. 2018;66:487–95.

    Article  PubMed  Google Scholar 

  50. Tomoto T, Tarumi T, Chen JN, Hynan LS, Cullum CM, Zhang R. One-year aerobic exercise altered cerebral vasomotor reactivity in mild cognitive impairment. J Appl Physiol. 2021;131:119–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Isaacson RS, Hristov H, Saif N, Hackett K, Hendrix S, Melendez J, et al. Individualized clinical management of patients at risk for Alzheimer’s dementia. Alzheimers Dement. 2019;15:1588–602.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8:448–60.

    Article  PubMed  Google Scholar 

  53. Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006;66:1837–44.

    Article  CAS  PubMed  Google Scholar 

  54. Valenzuela MJ. Brain reserve and the prevention of dementia. Curr Opin Psychiatry. 2008;21:296–302.

    Article  PubMed  Google Scholar 

  55. Caamano-Isorna F, Corral M, Montes-Martinez A, Takkouche B. Education and dementia: a meta-analytic study. Neuroepidemiology. 2006;26:226–32.

    Article  PubMed  Google Scholar 

  56. Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288:2271–81.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Willis SL, Tennstedt SL, Marsiske M, Ball K, Elias J, Koepke KM, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296:2805–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Papp KV, Walsh SJ, Snyder PJ. Immediate and delayed effects of cognitive interventions in healthy elderly: a review of current literature and future directions. Alzheimers Dement. 2009;5:50–60.

    Article  PubMed  Google Scholar 

  59. Martin M, Clare L, Altgassen AM, Cameron MH, Zehnder F. Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Database Syst Rev 2011;1:CD006220.

  60. Davies NM, Hill WD, Anderson EL, Sanderson E, Deary IJ, Davey Smith G. Multivariable two-sample Mendelian randomization estimates of the effects of intelligence and education on health. Elife. 2019;8:e43990.

  61. Wang M, Zhang Z, Liu D, Xie W, Ma Y, Yao J, et al. Educational attainment protects against epilepsy independent of cognitive function: A Mendelian randomization study. Epilepsia. 2021;62:1362–8.

    Article  CAS  PubMed  Google Scholar 

  62. Liang J, Cai H, Liang G, Liu Z, Fang L, Zhu B, et al. Educational attainment protects against type 2 diabetes independently of cognitive performance: a Mendelian randomization study. Acta Diabetol. 2021;58:567–74.

    Article  CAS  PubMed  Google Scholar 

  63. Rosoff DB, Kaminsky ZA, McIntosh AM, Davey Smith G, Lohoff FW. Educational attainment reduces the risk of suicide attempt among individuals with and without psychiatric disorders independent of cognition: a bidirectional and multivariable Mendelian randomization study with more than 815,000 participants. Transl Psychiatry. 2020;10:388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gill D, Efstathiadou A, Cawood K, Tzoulaki I, Dehghan A. Education protects against coronary heart disease and stroke independently of cognitive function: evidence from Mendelian randomization. Int J Epidemiol. 2019;48:1468–77.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Adams CD. A multivariable Mendelian randomization to appraise the pleiotropy between intelligence, education, and bipolar disorder in relation to schizophrenia. Sci Rep. 2020;10:6018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sanderson E, Davey Smith G, Bowden J, Munafo MR. Mendelian randomisation analysis of the effect of educational attainment and cognitive ability on smoking behaviour. Nat Commun. 2019;10:2949.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Emdin CA, Khera AV, Natarajan P, Klarin D, Zekavat SM, Hsiao AJ, et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA. 2017;317:626–34.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Larsson SC, Burgess S, Michaelsson K. Association of genetic variants related to serum calcium levels with coronary artery disease and myocardial infarction. JAMA. 2017;318:371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu JZ, Erlich Y, Pickrell JK. Case-control association mapping by proxy using family history of disease. Nat Genet. 2017;49:325–31.

    Article  CAS  PubMed  Google Scholar 

  70. Marioni RE, Harris SE, Zhang Q, McRae AF, Hagenaars SP, Hill WD, et al. GWAS on family history of Alzheimer’s disease. Transl Psychiatry. 2018;8:99.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51:404–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schwartzentruber J, Cooper S, Liu JZ, Barrio-Hernandez I, Bello E, Kumasaka N, et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat Genet. 2021;53:392–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. de Rojas I, Moreno-Grau S, Tesi N, Grenier-Boley B, Andrade V, Jansen IE, et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat Commun. 2021;12:3417.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wightman DP, Jansen IE, Savage JE, Shadrin AA, Bahrami S, Holland D, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet. 2021;53:1276–82.

    Article  CAS  PubMed  Google Scholar 

  75. Andrews SJ, Fulton-Howard B, Goate A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 2020;19:326–35.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liu H, Hu Y, Zhang Y, Zhang H, Gao S, Wang L, et al. Mendelian randomization highlights significant difference and genetic heterogeneity in clinically diagnosed Alzheimer’s disease GWAS and self-report proxy phenotype GWAX. Alzheimers Res Ther. 2022;14:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Smeland OB, Frei O, Shadrin A, O’Connell K, Fan CC, Bahrami S, et al. Discovery of shared genomic loci using the conditional false discovery rate approach. Hum Genet. 2020;139:85–94.

    Article  CAS  PubMed  Google Scholar 

  79. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50:229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the International Genomics of Alzheimer’s Project (IGAP) and Complex Trait Genetics lab (CTGlab), Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University & VU Medical Centre Amsterdam for providing summary results data. The investigators within IGAP contributed to the design and implementation of IGAP and/or provided data but did not participate in analysis or writing of this report. IGAP was made possible by the generous participation of the control subjects, the patients, and their families. The i-Select chips was funded by the French National Foundation on AD and related disorders. EADI was supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, Université de Lille 2 and the Lille University Hospital. GERAD was supported by the Medical Research Council (Grant n° 503480), Alzheimer’s Research UK (Grant no 503176), the Wellcome Trust (Grant no 082604/2/07/Z) and German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant no 01GI0102, 01GI0711, 01GI0420. CHARGE was partly supported by the NIH/NIA grant R01 AG033193 and the NIA AG081220 and AGES contract N01-AG-12100, the NHLBI grant R01 HL105756, the Icelandic Heart Association, and the Erasmus Medical Center and Erasmus University. ADGC was supported by the NIH/NIA grants: U01 AG032984, U24 AG021886, U01 AG016976, and the Alzheimer’s Association grant ADGC-10-196728. This research has been conducted using the UK Biobank resource (https://www.ukbiobank.ac.uk). We thank the individual patients who provided the sample that made data available; without them the study would not have been possible.

Funding

This work was supported by funding from the National Natural Science Foundation of China (Grant No. 82071212, and 81901181), Beijing Natural Science Foundation (Grant No. JQ21022), the Mathematical Tianyuan Fund of the National Natural Science Foundation of China (Grant No. 12026414), and Beijing Ten Thousand Talents Project (Grant No. 2020A15). This work was also partially supported by funding from the Science and Technology Beijing One Hundred Leading Talent Training Project (Z141107001514006), the Beijing Municipal Administration of Hospitals’ Mission Plan (SML20150802), the Funds of Academic Promotion Programme of Shandong First Medical University & Shandong Academy of Medical Sciences (Nos. 2019QL016 and 2019PT007).

Author information

Authors and Affiliations

Authors

Contributions

GYL and YH designed the study; GYL and YH analyzed the data; all authors contributed to the interpretation of the results and critical revision of the manuscript for important intellectual content and approved the final version of the manuscript.

Corresponding author

Correspondence to Guiyou Liu.

Ethics declarations

Ethics approval and consent to participate

This article contains human participants collected by several studies performed by previous studies. All participants gave informed consent in all the corresponding original studies, as described in the “Materials and methods”. Here, our study is based on the publicly available, large-scale datasets, and not the individual-level data. Hence, ethical approval was not sought.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhang, Y., Zhang, H. et al. Cognitive performance protects against Alzheimer’s disease independently of educational attainment and intelligence. Mol Psychiatry 27, 4297–4306 (2022). https://doi.org/10.1038/s41380-022-01695-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01695-4

This article is cited by

Search

Quick links