Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypoxia Inducible Factor-1α binds and activates γ-secretase for Aβ production under hypoxia and cerebral hypoperfusion

Abstract

Hypoxic-ischemic injury has been linked with increased risk for developing Alzheimer’s disease (AD). The underlying mechanism of this association is poorly understood. Here, we report distinct roles for hypoxia-inducible factor-1α (Hif-1α) in the regulation of BACE1 and γ-secretase activity, two proteases involved in the production of amyloid-beta (Aβ). We have demonstrated that Hif-1α upregulates both BACE1 and γ-secretase activity for Aβ production in brain hypoxia-induced either by cerebral hypoperfusion or breathing 10% O2. Hif-1α binds to γ-secretase, which elevates the amount of active γ-secretase complex without affecting the level of individual subunits in hypoxic-ischemic mouse brains. Additionally, the expression of full length Hif-1α increases BACE1 and γ-secretase activity in primary neuronal culture, whereas a transcriptionally incompetent Hif-1α variant only activates γ-secretase. These findings indicate that Hif-1α transcriptionally upregulates BACE1 and nontranscriptionally activates γ-secretase for Aβ production in hypoxic-ischemic conditions. Consequently, Hif-1α-mediated Aβ production may be an adaptive response to hypoxic-ischemic injury, subsequently leading to increased risk for AD. Preventing the interaction of Hif-1α with γ-secretase may therefore be a promising therapeutic strategy for AD treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ischemic condition leads to an accumulation of Hif-1a in neurons in BCAS mice.
Fig. 2: γ-Secretase activity is upregulated in the ischemia mouse model.
Fig. 3: Ischemia hypoxia does change the expression and activity of ADAM-10 and ADAM-17.
Fig. 4: Hypoxia increases γ-secretase activity and BACE1 expression in mice.
Fig. 5: Non-transcriptional Hif-1α increases γ-secretase activity in primary neurons.
Fig. 6: Dual roles of Hif-1α activate γ-secretase and increase BACE1 through distinct mechanisms.

Similar content being viewed by others

References

  1. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5:347–60.

    CAS  PubMed  Google Scholar 

  2. Santos CY, Snyder PJ, Wu WC, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. Alzheimers Dement. 2017;7:69–87.

    Google Scholar 

  3. Knopman DS, Amieva H, Petersen RC, Chetelat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nat Rev Dis Prim. 2021;7:33.

    PubMed  Google Scholar 

  4. Cortes-Canteli M, Iadecola C. Alzheimer’s disease and vascular aging: JACC Focus Seminar. J Am Coll Cardiol. 2020;75:942–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, et al. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci USA. 2006;103:18727–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, et al. Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem. 2007;282:10873–80.

    CAS  PubMed  Google Scholar 

  7. De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron. 2003;38:9–12.

    PubMed  Google Scholar 

  8. Wang R, Zhang YW, Zhang X, Liu R, Hong S, Xia K, et al. Transcriptional regulation of APH-1A and increased gamma-secretase cleavage of APP and Notch by HIF-1 and hypoxia. FASEB J. 2006;20:1275–7.

    PubMed  Google Scholar 

  9. Li L, Zhang X, Yang D, Luo G, Chen S, Le W. Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol Aging. 2009;30:1091–8.

    CAS  PubMed  Google Scholar 

  10. Villa JC, Chiu D, Brandes AH, Escorcia FE, Villa CH, Maguire WF, et al. Nontranscriptional role of Hif-1α in activation of γ-secretase and notch signaling in breast cancer. Cell Rep. 2014;8:1077–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gertsik N, Chiu D, Li YM. Complex regulation of gamma-secretase: from obligatory to modulatory subunits. Front Aging Neurosci. 2014;6:342.

    PubMed  Google Scholar 

  12. Wong E, Frost GR, Li YM. γ-Secretase modulatory proteins: the guiding hand behind the running scissors. Front Aging Neurosci. 2020;12:614690.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hur JY, Frost GR, Wu X, Crump C, Pan SJ, Wong E, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature. 2020;586:735–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. He G, Luo W, Li P, Remmers C, Netzer WJ, Hendrick J, et al. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature. 2010;467:95–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wong E, Liao GP, Chang JC, Xu P, Li YM, Greengard P. GSAP modulates γ-secretase specificity by inducing conformational change in PS1. Proc Natl Acad Sci USA. 2019;116:6385–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jung S, Hyun J, Nah J, Han J, Kim SH, Park J, et al. SERP1 is an assembly regulator of gamma-secretase in metabolic stress conditions. Sci Signal. 2020; 13:eaax8949

  17. Ding B, Kilpatrick DL. Lentiviral vector production, titration, and transduction of primary neurons. Methods Mol Biol. 2013;1018:119–31.

    CAS  PubMed  Google Scholar 

  18. Chun J, Yin YI, Yang G, Tarassishin L, Li YM. Stereoselective synthesis of photoreactive peptidomimetic gamma-secretase inhibitors. J Org Chem. 2004;69:7344–7.

    CAS  PubMed  Google Scholar 

  19. Placanica L, Tarassishin L, Yang G, Peethumnongsin E, Kim SH, Zheng H, et al. Pen2 and presenilin-1 modulate the dynamic equilibrium of presenilin-1 and presenilin-2 gamma-secretase complexes. J Biol Chem. 2009;284:2967–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Placanica L, Chien JW, Li YM. Characterization of an atypical gamma-secretase complex from hematopoietic origin. Biochemistry. 2010;49:2796–804.

    CAS  PubMed  Google Scholar 

  21. Placanica L, Zhu L, Li YM. Gender- and age-dependent gamma-secretase activity in mouse brain and its implication in sporadic Alzheimer disease. PLoS One. 2009;4:e5088.

    PubMed  PubMed Central  Google Scholar 

  22. Coleman CG, Wang G, Park L, Anrather J, Delagrammatikas GJ, Chan J, et al. Chronic intermittent hypoxia induces NMDA receptor-dependent plasticity and suppresses nitric oxide signaling in the mouse hypothalamic paraventricular nucleus. J Neurosci. 2010;30:12103–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hattori Y, Kitamura A, Nagatsuka K, Ihara M. A novel mouse model of ischemic carotid artery disease. PLOS ONE. 2014;9:e100257.

    PubMed  PubMed Central  Google Scholar 

  24. Koizumi K, Hattori Y, Ahn SJ, Buendia I, Ciacciarelli A, Uekawa K, et al. Apoepsilon4 disrupts neurovascular regulation and undermines white matter integrity and cognitive function. Nat Commun. 2018;9:3816.

    PubMed  PubMed Central  Google Scholar 

  25. Li YM, Xu M, Lai MT, Huang Q, Castro JL, DiMuzio-Mower J, et al. Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature. 2000;405:689–94.

    CAS  PubMed  Google Scholar 

  26. Chau DM, Crump CJ, Villa JC, Scheinberg DA, Li YM. Familial Alzheimer disease presenilin-1 mutations alter the active site conformation of gamma-secretase. J Biol Chem. 2012;287:17288–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian Y, Bassit B, Chau D, Li YM. An APP inhibitory domain containing the Flemish mutation residue modulates gamma-secretase activity for Abeta production. Nat Struct Mol Biol. 2010;17:151–8.

    CAS  PubMed  Google Scholar 

  28. Li YM, Lai MT, Xu M, Huang Q, DiMuzio-Mower J, Sardana MK, et al. Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc Natl Acad Sci USA. 2000;97:6138–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Koizumi K, Hattori Y, Ahn SJ, Buendia I, Ciacciarelli A, Uekawa K, et al. Apoε4 disrupts neurovascular regulation and undermines white matter integrity and cognitive function. Nat Commun. 2018;9:3816.

    PubMed  PubMed Central  Google Scholar 

  30. Zhao J, O’Connor T, Vassar R. The contribution of activated astrocytes to Abeta production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation. 2011;8:150.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol. 2017;7:170228.

    PubMed  PubMed Central  Google Scholar 

  32. Crump CJ, AM Ende CW, Ballard TE, Pozdnyakov N, Pettersson M, Chau DM, et al. Development of clickable active site-directed photoaffinity probes for gamma-secretase. Bioorg Med Chem Lett. 2012;22:2997–3000.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nie P, Vartak A, Li YM. gamma-Secretase inhibitors and modulators: Mechanistic insights into the function and regulation of gamma-Secretase. Semin Cell Dev Biol. 2020;105:43–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Washida K, Hattori Y, Ihara M. Animal models of chronic cerebral hypoperfusion: from mouse to primate. Int J Mol Sci. 2019;20:6176.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Güner G, Lichtenthaler SF. The substrate repertoire of γ-secretase/presenilin. Semin Cell Dev Biol. 2020;105:27–42.

    PubMed  Google Scholar 

  36. Lai MT, Chen E, Crouthamel MC, DiMuzio-Mower J, Xu M, Huang Q, et al. Presenilin-1 and presenilin-2 exhibit distinct yet overlapping gamma-secretase activities. J Biol Chem. 2003;278:22475–81.

    CAS  PubMed  Google Scholar 

  37. Liu L, Lauro BM, Ding L, Rovere M, Wolfe MS, Selkoe DJ. Multiple BACE1 inhibitors abnormally increase the BACE1 protein level in neurons by prolonging its half-life. Alzheimers Dement. 2019;15:1183–94.

    PubMed  PubMed Central  Google Scholar 

  38. Capell A, Steiner H, Willem M, Kaiser H, Meyer C, Walter J, et al. Maturation and pro-peptide cleavage of beta-secretase. J Biol Chem. 2000;275:30849–54.

    CAS  PubMed  Google Scholar 

  39. Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, et al. The role of presenilin cofactors in the gamma-secretase complex. Nature. 2003;422:438–41.

    CAS  PubMed  Google Scholar 

  40. Herreman A, Van Gassen G, Bentahir M, Nyabi O, Craessaerts K, Mueller U, et al. gamma-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation. J Cell Sci. 2003;116:1127–36. Pt 6

    CAS  PubMed  Google Scholar 

  41. Ratovitski T, Slunt HH, Thinakaran G, Price DL, Sisodia SS, Borchelt DR. Endoproteolytic processing and stabilization of wild-type and mutant presenilin. J Biol Chem. 1997;272:24536–41.

    CAS  PubMed  Google Scholar 

  42. Berra E, Roux D, Richard DE, Pouyssegur J. Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep. 2001;2:615–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol. 2002;22:7405–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wollenick K, Hu J, Kristiansen G, Schraml P, Rehrauer H, Berchner-Pfannschmidt U, et al. Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling. Nucleic Acids Res. 2012;40:1928–43.

    CAS  PubMed  Google Scholar 

  45. O’Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, et al. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron. 2008;60:988–1009.

    PubMed  PubMed Central  Google Scholar 

  46. Suh J, Romano DM, Nitschke L, Herrick SP, DiMarzio BA, Dzhala V, et al. Loss of Ataxin-1 potentiates Alzheimer’s pathogenesis by elevating Cerebral BACE1 transcription. Cell. 2019;178:1159–1175 e1117.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brothers HM, Gosztyla ML, Robinson SR. The Physiological roles of amyloid-beta peptide hint at new ways to treat Alzheimer’s disease. Front Aging Neurosci. 2018;10:118.

    PubMed  PubMed Central  Google Scholar 

  48. Brody DL, Magnoni S, Schwetye KE, Spinner ML, Esparza TJ, Stocchetti N, et al. Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science. 2008;321:1221–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee PH, Bang OY, Hwang EM, Lee JS, Joo US, Mook-Jung I, et al. Circulating beta amyloid protein is elevated in patients with acute ischemic stroke. J Neural Transm. 2005;112:1371–9.

    CAS  PubMed  Google Scholar 

  50. Magnoni S, Esparza TJ, Conte V, Carbonara M, Carrabba G, Holtzman DM, et al. Tau elevations in the brain extracellular space correlate with reduced amyloid-beta levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain. 2012;135:1268–80. Pt 4

    PubMed  Google Scholar 

  51. Koike MA, Lin AJ, Pham J, Nguyen E, Yeh JJ, Rahimian R, et al. APP knockout mice experience acute mortality as the result of ischemia. PLoS One. 2012;7:e42665.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Clarke J, Thornell A, Corbett D, Soininen H, Hiltunen M, Jolkkonen J. Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats. Eur J Neurosci. 2007;26:1845–52.

    PubMed  Google Scholar 

  53. Mannix RC, Zhang J, Berglass J, Qui J, Whalen MJ. Beneficial effect of amyloid beta after controlled cortical impact. Brain Inj. 2013;27:743–8.

    PubMed  Google Scholar 

  54. Vangeison G, Carr D, Federoff HJ, Rempe DA. The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. J Neurosci. 2008;28:1988–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Iadecola C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010;120:287–96.

    PubMed  PubMed Central  Google Scholar 

  56. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80:844–66.

    CAS  PubMed  Google Scholar 

  57. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67:181–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans AC. Alzheimer’s disease Neuroimaging I. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zetterberg H, Mortberg E, Song L, Chang L, Provuncher GK, Patel PP, et al. Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid beta levels in humans. PLoS One. 2011;6:e28263.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol. 1988;23:138–44.

    CAS  PubMed  Google Scholar 

  61. Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, et al. Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology. 1988;38:1682–7.

    CAS  PubMed  Google Scholar 

  62. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30:572–80.

    CAS  PubMed  Google Scholar 

  63. Ackley SF, Zimmerman SC, Brenowitz WD, Tchetgen Tchetgen EJ, Gold AL, Manly JJ, et al. Effect of reductions in amyloid levels on cognitive change in randomized trials: instrumental variable meta-analysis. BMJ. 2021;372:n156.

    PubMed  PubMed Central  Google Scholar 

  64. Neff RA, Wang M, Vatansever S, Guo L, Ming C, Wang Q, et al. Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets. Sci Adv. 2021;7:eabb5398.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang M, Li A, Sekiya M, Beckmann ND, Quan X, Schrode N, et al. Transformative network modeling of multi-omics data reveals detailed circuits, key regulators, and potential therapeutics for Alzheimer’s disease. Neuron. 2021;109:257–272 e214.

    CAS  PubMed  Google Scholar 

  66. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707–20.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institutes of Health R01AG061350(YML), R01NS096275 (YML), RF1AG057593 (YML), 1R01NS100447 (CI), R01NS/HL37853 (CI) and the JPB Foundation (YML), Bilateral Research Joint Projects of Japan Society for the Promotion of Science, 120209939 (YH). Authors also acknowledge the MSK Cancer Center Support Grant/Core Grant (Grant P30 CA008748), Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Experimental Therapeutics Center of MSKCC, and the William Randolph Hearst Fund in Experimental Therapeutics.

Author information

Authors and Affiliations

Authors

Contributions

CA, TL, YH. DC, GRF, LJ, CL, CLA,EW and LP conducted experiments and analyzed data. CA, TL, CI, and Y.-M.L. conceived the project and wrote the paper.

Corresponding author

Correspondence to Yue-Ming Li.

Ethics declarations

Conflict of interest

LYM is a co-inventor of intellectual property (assay for gamma secretase activity and screening method for gamma secretase inhibitors) owned by MSKCC and licensed to Jiangsu Continental Medical Development. CI serves on the Scientific Advisory Board of Broadview Ventures.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, C., Li, T., Hattori, Y. et al. Hypoxia Inducible Factor-1α binds and activates γ-secretase for Aβ production under hypoxia and cerebral hypoperfusion. Mol Psychiatry 27, 4264–4273 (2022). https://doi.org/10.1038/s41380-022-01676-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01676-7

This article is cited by

Search

Quick links