Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dormant state of quiescent neural stem cells links Shank3 mutation to autism development

Abstract

Autism spectrum disorders (ASDs) are common neurodevelopmental disorders characterized by deficits in social interactions and communication, restricted interests, and repetitive behaviors. Despite extensive study, the molecular targets that control ASD development remain largely unclear. Here, we report that the dormancy of quiescent neural stem cells (qNSCs) is a therapeutic target for controlling the development of ASD phenotypes driven by Shank3 deficiency. Using single-cell RNA sequencing (scRNA-seq) and transposase accessible chromatin profiling (ATAC-seq), we find that abnormal epigenetic features including H3K4me3 accumulation due to up-regulation of Kmt2a levels lead to increased dormancy of qNSCs in the absence of Shank3. This result in decreased active neurogenesis in the Shank3 deficient mouse brain. Remarkably, pharmacological and molecular inhibition of qNSC dormancy restored adult neurogenesis and ameliorated the social deficits observed in Shank3-deficient mice. Moreover, we confirmed restored human qNSC activity rescues abnormal neurogenesis and autism-like phenotypes in SHANK3-targeted human NSCs. Taken together, our results offer a novel strategy to control qNSC activity as a potential therapeutic target for the development of autism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of qNSCs as a target cell for aberrant neurodevelopment in the Shank3 deficient autistic mouse brain.
Fig. 2: Validation of qNSCs activity in the SVZ and dentate gyrus of Shank3B deficient mice.
Fig. 3: Dormant state of qNSCs as a target for aberrant neurodevelopment in the Shank3 deficient autistic mouse brain.
Fig. 4: Inhibition of Kmt2a rescues the abnormal quiescent state of qNSCs and autism-like social deficits of Shank3 deficient mice.
Fig. 5: OICR-9429 induces activation of abnormal quiescent state of qNSCs and prolonged rescue of autism-like social deficits in Shank3B KO mice.
Fig. 6: Targeting human qNSCs activity in SHANK3-deficient human NSCs and autistic patient brains.

Similar content being viewed by others

Data availability

The analysis of single-cell RNA-seq and ATAC-seq data reported in this paper has been deposited in the NCBI SRA database.

Code availability

All codes generated in this study are available from the lead contact upon reasonable request.

References

  1. Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci. 2010;11:490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci. 2012;14:281–92.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rylaarsdam L, Guemez-Gamboa. A genetic causes and modifiers of autism spectrum disorder. Front. Cellular Neurosci. 2019;13:385.

  4. Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harbor Perspectives Biol. 2012;4:a0009886.

    Article  CAS  Google Scholar 

  5. Guang S, Pang N, Deng X, Yang L, He F, Wu L, et al. Synaptopathology involved in autism spectrum disorder. Front Cell Neurosci. 2018;12:470–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eshraghi AA, Liu G, Kay SS, Eshraghi RS, Mittal J, Moshiree B, et al. Epigenetics and autism spectrum disorder: Is there a correlation? Front Cell Neurosci. 2018;12:78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wiśniowiecka-Kowalnik B, Nowakowska BA. Genetics and epigenetics of autism spectrum disorder-current evidence in the field. J Appl Genet. 2019;60:37–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264:1145–8.

    Article  CAS  PubMed  Google Scholar 

  9. Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703–16.

    Article  CAS  PubMed  Google Scholar 

  10. Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci. 2001;21:7153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang YZ, Plane JM, Jiang P, Zhou CJ, Deng W. Concise review: Quiescent and active states of endogenous adult neural stem cells: Identification and characterization. Stem cells (Dayt, Ohio). 2011;29:907–12.

    Article  CAS  Google Scholar 

  12. Kalamakis G, Brüne D, Ravichandran S, Bolz J, Fan W, Ziebell F, et al. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell. 2019;176:1407–.e1414.

    Article  CAS  PubMed  Google Scholar 

  13. Lim DA, Huang YC, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, et al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature. 2009;458:529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jakovcevski M, Ruan H, Shen EY, Dincer A, Javidfar B, Ma Q, et al. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory. J Neurosci: Off J Soc Neurosci. 2015;35:5097–108.

    Article  CAS  Google Scholar 

  15. Jiang YH, Ehlers MD. Modeling autism by SHANK gene mutations in mice. Neuron. 2013;78:8–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single cell data. Cell. 2019;177:1888–.e1821.

    Article  CAS  Google Scholar 

  17. Zywitza V, Misios A, Bunatyan L, Willnow TE, Rajewsky N. Single-cell transcriptomics characterizes cell types in the subventricular zone and uncovers molecular defects impairing adult neurogenesis. Cell Rep. 2018;25:2457–.e2458.

    Article  CAS  PubMed  Google Scholar 

  18. Dulken BW, Leeman DS, Boutet SC, Hebestreit K, Brunet A. Single-cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep. 2017;18:777–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shah PT, Stratton JA, Stykel MG, Abbasi S, Sharma S, Mayr KA, et al. Single-cell transcriptomics and fate mapping of ependymal cells reveals an absence of neural stem cell function. Cell. 2018;173:1045–.e1049.

    Article  CAS  PubMed  Google Scholar 

  20. Basak O, Krieger TG, Muraro MJ, Wiebrands K, Stange DE, Frias-Aldeguer J, et al. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc Natl Acad Sci. 2018;115:E610–E619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Otsuki L, Brand AH. Quiescent neural stem cells for brain repair and regeneration: Lessons from model systems. Trends Neurosci. 2020;43:213–26.

    Article  CAS  PubMed  Google Scholar 

  22. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron. 2014;82:545–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhuo L, Sun B, Zhang CL, Fine A, Chiu SY, Messing A. Live astrocytes visualized by green fluorescent protein in transgenic mice. Developmental Biol. 1997;187:36–42.

    Article  CAS  Google Scholar 

  24. Sueda R, Imayoshi I, Harima Y, Kageyama R. High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs. active neural stem cells in the adult mouse brain. Genes Dev. 2019;33:511–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mich JK, Signer RA, Nakada D, Pineda A, Burgess RJ, Vue TY, et al. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife. 2014;3:e02669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Qin L, Ma K, Wang Z-J, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grebien F, Vedadi M, Getlik M, Giambruno R, Grover A, Avellino R, et al. Pharmacological targeting of the Wdr5-MLL interaction in C/EBPα N-terminal leukemia. Nat Chem Biol. 2015;11:571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marchetto MCN, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of rett syndrome using human induced pluripotent stem. Cells Cell. 2010;143:527–39.

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell. 2013;13:446–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kim H, Park HJ, Choi H, Chang Y, Park H, Shin J, et al. Modeling G2019S-LRRK2 sporadic Parkinson’s Disease in 3D midbrain organoids. Stem cell Rep. 2019;12:518–31.

    Article  CAS  Google Scholar 

  31. Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, et al. Single-cell genomics identifies cell type–specific molecular changes in autism. Science. 2019;364:685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science. 2017;358:1318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li L, Candelario KM, Thomas K, Wang R, Wright K, Messier A, et al. Hypoxia inducible factor-1α (HIF-1α) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ. J Neurosci: Off J Soc Neurosci. 2014;34:16713–9.

    Article  CAS  Google Scholar 

  34. Bond AM, Bhalala OG, Kessler JA. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Developmental Neurobiol. 2012;72:1068–84.

    Article  CAS  Google Scholar 

  35. Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015;17:329–40.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Z, Li X, Zhou J, Yuan B, Yu B, Tong D, et al. Accumulated quiescent neural stem cells in adult hippocampus of the mouse model for the MECP2 duplication syndrome. Sci Rep. 2017;7:41701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cope EC, Briones BA, Brockett AT, Martinez S, Vigneron PA, Opendak M et al. Immature neurons and radial glia, but not astrocytes or microglia, are altered in adult Cntnap2 and Shank3 Mice, Models of Autism. eNeuro. 2016;3:0196–16.

  38. Orosco LA, Ross AP, Cates SL, Scott SE, Wu D, Sohn J, et al. Loss of Wdfy3 in mice alters cerebral cortical neurogenesis reflecting aspects of the autism pathology. Nat Commun. 2014;5:4692.

    Article  CAS  PubMed  Google Scholar 

  39. Grasselli C, Carbone A, Panelli P, Giambra V, Bossi M, Mazzoccoli G, et al. Neural stem cells from Shank3-ko mouse model autism spectrum disorders. Mol Neurobiol. 2020;57:1502–15.

    Article  CAS  PubMed  Google Scholar 

  40. Tang C, Wang M, Wang P, Wang L, Wu Q, Guo W. Neural stem cells behave as a functional niche for the maturation of newborn. Neurons Secret Ptn Neuron. 2019;101:32–44.e36.

    CAS  Google Scholar 

  41. Wang ZJ, Zhong P, Ma K, Seo JS, Yang F, Hu Z, et al. Amelioration of autism-like social deficits by targeting histone methyltransferases EHMT1/2 in Shank3-deficient mice. Mol Psychiatry. 2020;25:2517–33.

    Article  CAS  PubMed  Google Scholar 

  42. Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D, Dvir-Szternfeld R, et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat Neurosci. 2020;23:701–6.

    Article  CAS  PubMed  Google Scholar 

  43. Qin L, Ma K, Wang ZJ, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim H, Yoo J, Shin J, Chang Y, Jung J, Jo DG, et al. Modelling APOE ɛ3/4 allele-associated sporadic Alzheimer’s disease in an induced neuron. Brain: J Neurol. 2017;140:2193–209.

    Article  Google Scholar 

  45. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316:1497–502.

    Article  CAS  PubMed  Google Scholar 

  46. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci. 2019;22:524–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea by the Ministry of Education, Science, and Technology (NRF-2020R1A2C3007378, 2021M3E5E5096464). This work is also supported by Lundbeck Foundation (R313–2019–421) and The Novo Nordisk Foundation Center (NNF17CC0027852) to KJW.

Author information

Authors and Affiliations

Authors

Contributions

HK and BC performed the experiments. CJL, and KJW performed the data analysis. HK, BC, and JK designed the study and contributed to writing the paper.

Corresponding authors

Correspondence to Kyoung-Jae Won or Jongpil Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Cho, B., Park, H. et al. Dormant state of quiescent neural stem cells links Shank3 mutation to autism development. Mol Psychiatry 27, 2751–2765 (2022). https://doi.org/10.1038/s41380-022-01563-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01563-1

This article is cited by

Search

Quick links