Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting histone demethylase LSD1 for treatment of deficits in autism mouse models

Abstract

Large-scale genetic studies have revealed that the most prominent genes disrupted in autism are chromatin regulators mediating histone methylation/demethylation, suggesting the central role of epigenetic dysfunction in this disorder. Here, we show that histone lysine 4 dimethylation (H3K4me2), a histone mark linked to gene activation, is significantly decreased in the prefrontal cortex (PFC) of autistic human patients and mutant mice with the deficiency of top-ranking autism risk factor Shank3 or Cul3. A brief treatment of the autism models with highly potent and selective inhibitors of the H3K4me2 demethylase LSD1 (KDM1A) leads to the robust rescue of core symptoms of autism, including social deficits and repetitive behaviors. Concomitantly, LSD1 inhibition restores NMDA receptor function in PFC and AMPA receptor-mediated currentsĀ in striatum of Shank3-deficient mice. Genome-wide RNAseq and ChIPseq reveal that treatment of Shank3-deficient mice with the LSD1 inhibitor restores the expression and H3K4me2 occupancy of downregulated genes enriched in synaptic signaling and developmental processes. The immediate early gene tightly linked to neuronal plasticity, Egr1, is on the top list of rescued genes. The diminished transcription of Egr1 is recapitulated in PFC of autistic human patients. Overexpression of Egr1 in PFC of Shank3-deficient mice ameliorates social preference deficits. These results have for the first time revealed an important role of H3K4me2 abnormality in ASD pathophysiology, and the therapeutic potential of targeting H3K4me2 demethylase LSD1 or the downstream molecule Egr1 for ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Autistic patients and Shank3-deficient mice have diminished H3K4 dimethylation in PFC neurons, which is reversed by histone demethylase 1 (LSD1) inhibition.
Fig. 2: Treatment with LSD1 inhibitors rescues autism-like social deficits and repetitive behaviors in Shank3-deficient mice.
Fig. 3: Treatment with LSD1 inhibitor rescues social deficits in Cul3 model of autism.
Fig. 4: Treatment of Shank3-deficient mice with LSD1 inhibitor rescues NMDAR hypofunction in PFC and restores synaptic response in striatum.
Fig. 5: Treatment with LSD1 inhibitor induces genome-wide restoration of down-regulated genes in PFC of Shank3-deficient mice.
Fig. 6: Overexpression of Egr1 in PFC of Shank3-deficient mice rescues autism-like social deficits.
Fig. 7: Treatment with LSD1 inhibitor induces genome-wide restoration of H3K4me2 occupancy at gene promoters in PFC of Shank3-deficient mice.

Similar content being viewed by others

Data availability

The RNAseq and ChIPseq data generated in this study have been deposited in the GEO public repository under accession code GSE193380.

References

  1. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209ā€“15.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Coe BP, Stessman HAF, Sulovari A, Geisheker MR, Bakken TE, Lake AM, et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat Genet. 2019;51:106ā€“16.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Stessman HA, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49:515ā€“26.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  4. Geschwind DH, State MW. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol. 2015;14:1109ā€“20.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 2019;20:625ā€“41.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  6. Tunovic S, Barkovich J, Sherr EH, Slavotinek AM. De novo ANKRD11 and KDM1A gene mutations in a male with features of KBG syndrome and Kabuki syndrome. Am J Med Genet A. 2014;164A:1744ā€“9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  7. Shen E, Shulha H, Weng Z, Akbarian S. Regulation of histone H3K4 methylation in brain development and disease. Philos Trans R Soc Biol Sci 2014;369:20130514.

  8. Shulha HP, Cheung I, Whittle C, Wang J, Virgil D, Lin CL, et al. Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons. Arch Gen Psychiatry. 2012;69:314ā€“24.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a ā€œcommonā€ but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism. 2013;4:17.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  10. Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10:e1004580.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Qin L, Ma K, Wang ZJ, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564ā€“75.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  12. Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, Qin L, et al. Autism-like deficits in Shank3-Deficient mice are rescued by targeting actin regulators. Cell Rep. 2015;11:1400ā€“13.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  13. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437ā€“42.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  14. Jaramillo TC, Speed HE, Xuan Z, Reimers JM, Escamilla CO, Weaver TP, et al. Novel Shank3 mutant exhibits behaviors with face validity for autism and altered striatal and hippocampal function. Autism Res. 2017;10:42ā€“65.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  15. Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  16. Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet. 2011;20:3093ā€“108.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  17. Wang ZJ, Zhong P, Ma K, Seo JS, Yang F, Hu Z, et al. Amelioration of autism-like social deficits by targeting histone methyltransferases EHMT1/2 in Shank3-deficient mice. Mol Psychiatry. 2020;25:2517ā€“33.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R. Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol. 2006;26:6395ā€“402.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  19. Nair SS, Li DQ, Kumar R. A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol Cell. 2013;49:704ā€“18.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  20. Meier K, Brehm A. Chromatin regulation: how complex does it get? Epigenetics. 2014;9:1485ā€“95.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01092-3. Online ahead of print.

  22. Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of disorganization in the neocortex of children with autism. N. Engl J Med. 2014;370:1209ā€“19.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  23. Cusan M, Cai SF, Mohammad HP, Krivtsov A, Chramiec A, Loizou E, et al. LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPalpha-dependent enhancers in AML. Blood. 2018;131:1730ā€“42.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  24. Rein B, Ma K, Yan Z. A standardized social preference protocol for measuring social deficits in mouse models of autism. Nat Protoc. 2020;15:3464ā€“77.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  25. Maes T, Mascaro C, Tirapu I, Estiarte A, Ciceri F, Lunardi S, et al. ORY-1001, a potent and selective covalent KDM1A inhibitor, for the treatment of acute leukemia. Cancer Cell. 2018;33:495ā€“511.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Rapanelli M, Tan T, Wang W, Wang X, Wang ZJ, Zhong P, et al. Behavioral, circuitry, and molecular aberrations by region-specific deficiency of the high-risk autism gene Cul3. Mol Psychiatry. 2021;26:1491ā€“504.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Oā€™Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246ā€“50.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell. 2009;35:841ā€“55.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Genschik P, Sumara I, Lechner E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. EMBO J. 2013;32:2307ā€“20.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  30. Won H, Lee HR, Gee HY, Mah W, Kim JI, Lee J, et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature. 2012;486:261ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Speed HE, Kouser M, Xuan Z, Reimers JM, Ochoa CF, Gupta N, et al. Autism-associated insertion mutation (InsG) of Shank3 exon 21 causes impaired synaptic transmission and behavioral deficits. J Neurosci. 2015;35:9648ā€“65.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  32. Wang W, Li C, Chen Q, van der Goes MS, Hawrot J, Yao AY, et al. Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism. J Clin Invest. 2017;127:1978ā€“90.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Duclot F, Kabbaj M. The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Front Behav Neurosci. 2017;11:35.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Mukai J, Cannavo E, Crabtree GW, Sun Z, Diamantopoulou A, Thakur P, et al. Recapitulation and reversal of schizophrenia-related phenotypes in Setd1a-deficient mice. Neuron. 2019;104:471ā€“87.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  35. Kundakovic M, Jiang Y, Kavanagh DH, Dincer A, Brown L, Pothula V, et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in postmortem human brain tissue. Biol Psychiatry. 2017;81:162ā€“70.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science. 2019;364:685ā€“9.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  37. Maze I, Covington HE 3rd, Dietz DM, LaPlant Q, Renthal W, Russo SJ, et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science. 2010;327:213ā€“6.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  38. Hamilton PJ, Burek DJ, Lombroso SI, Neve RL, Robison AJ, Nestler EJ, et al. Cell-type-specific epigenetic editing at the fosb gene controls susceptibility to social defeat stress. Neuropsychopharmacology. 2018;43:272ā€“84.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Ma K, Qin L, Matas E, Duffney LJ, Liu A, Yan Z. Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology. 2018;43:1779ā€“88.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  40. Qin L, Ma K, Yan Z. Chemogenetic activation of prefrontal cortex in Shank3-deficient mice ameliorates social deficits, NMDAR hypofunction, and Sgk2 downregulation. iScience. 2019;17:24ā€“35.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  41. Qin L, Ma K, Yan Z. Rescue of histone hypoacetylation and social deficits by ketogenic diet in a Shank3 mouse model of autism. Neuropsychopharmacology. 2021. https://doi.org/10.1038/s41386-021-01212-1. Online ahead of print.

  42. Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci. 2008;31:359ā€“87.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, et al. Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science. 2013;340:1234ā€“9.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  44. Hadjas LC, Schartner MM, Cand J, Creed MC, Pascoli V, LĆ¼scher C, et al. Projection-specific deficits in synaptic transmission in adult Sapap3-knockout mice. Neuropsychopharmacology. 2020;45:2020ā€“9.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  45. Knapska E, Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol. 2004;74:183ā€“211.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Koldamova R, Schug J, Lefterova M, Cronican AA, Fitz NF, Davenport FA, et al. Genome-wide approaches reveal EGR1-controlled regulatory networks associated with neurodegeneration. Neurobiol Dis. 2014;63:107ā€“14.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Covington HE 3rd, Lobo MK, Maze I, Vialou V, Hyman JM, Zaman S, et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci. 2010;30:16082ā€“90.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  48. Kimoto S, Bazmi HH, Lewis DA. Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268. Am J Psychiatry. 2014;171:969ā€“78.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Yamada K, Gerber DJ, Iwayama Y, Ohnishi T, Ohba H, Toyota T, et al. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc Natl Acad Sci. 2007;104:2815ā€“20.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  50. Rusconi F, Grillo B, Ponzoni L, Bassani S, Toffolo E, Paganini L, et al. LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior. Proc Natl Acad Sci. 2016;113:3651ā€“6.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  51. Dossat AM, Jourdi H, Wright KN, Strong CE, Sarkar A, Kabbaj M. Viral-mediated Zif268 expression in the prefrontal cortex protects against gonadectomy-induced working memory, long-term memory, and social interaction deficits in male rats. Neuroscience. 2017;340:243ā€“57.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Stack A, Carrier N, Dietz D, Hollis F, Sorenson J, Kabbaj M. Sex differences in social interaction in rats: role of the immediate-early gene zif268. Neuropsychopharmacology. 2010;35:570ā€“80.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  53. Yang Y, Shu X, Liu D, Shang Y, Wu Y, Pei L, et al. EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation. Neuron. 2012;73:774ā€“88.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank Dr. Craig Powell at University of Alabama at Birmingham for kindly providing breeding pairs of Shank3E13 mice. We thank Dr. Mohamed Kabbaj at Florida State University for kindly providing Egr1 AAV and GFP AAV. We also thank Xiaoqing Chen for excellent technical support and Luciana R. Frick for taking some confocal images. This work was supported by: Nancy Lurie Marks Family Foundation (ZY), National Institutes of Health (MH112237, MH126443) (ZY), National Center for Advancing Translational Sciences of the National Institutes of Health (KL2TR001413) (MR), and National Institutes of Health (MH104341, MH117790) (SA).

Author information

Authors and Affiliations

Authors

Contributions

MR performed some behavioral, immunocytochemical, biochemical experiments, bioinformatic analyses, and wrote the draft. JW and FY performed bioinformatic analyses. KM performed behavioral experiments. PZ carried out electrophysiological experiments. RP and MK performed some behavioral and biochemical assays. LQ, BR, Z-JW carried out qPCR or immunocytochemical experiments. BK, BJ, and LC extracted neuronal nuclei for ChIPseq experiments. SA oversaw ChIPseq studies. ZY designed experiments, supervised the project and wrote the paper. None of the authors have the financial interest related to this work.

Corresponding author

Correspondence to Zhen Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapanelli, M., Williams, J.B., Ma, K. et al. Targeting histone demethylase LSD1 for treatment of deficits in autism mouse models. Mol Psychiatry 27, 3355ā€“3366 (2022). https://doi.org/10.1038/s41380-022-01508-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01508-8

Search

Quick links