Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep brain stimulation of the “medial forebrain bundle”: sustained efficacy of antidepressant effect over years

Abstract

Deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle (MFB) has emerged as a quite efficacious therapy for treatment resistant depression (TRD), leading to rapid antidepressant effects. In this study, we complete our assessment of our first 10 enrolled patients throughout one year post-implantation, showing sustained antidepressant effect up to 5 years. The primary outcome measure was a 50% reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) score, which was interpreted as a response. Deterministic fiber tracking was used to individually map the target area. An insertional effect was seen during the 4-week sham stimulation phase (29% mean MADRS reduction, p = 0.02). However, after 2 weeks of initiating stimulation, five patients met response criteria (47% mean MADRS reduction, p < 0.001). One patient withdrew from study participation at 6 weeks. Twelve weeks after initiating stimulation, six of nine remaining patients had a >50% decrease in MADRS scores relative to baseline (52% mean MADRS reduction, p = 0.001); these same six patients continued to meet response criteria at 52 weeks (63% overall mean MADRS reduction, p < 0.001). Four of five patients who achieved the 5-year time point analysis continued to be responders (81% mean MADRS reduction, p < 0.001). Evaluation of modulated fiber tracts reveals significant common prefrontal/orbitofrontal connectivity to the target region in all responders. Key points learned from this study that we can incorporate in future protocols to better elucidate the effect of this therapy are a longer blinded sham stimulation phase and use of scheduled discontinuation concomitant with functional imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MADRS scores recorded over 52 weeks, expressed as % change (Δ) from baseline. Initiation = bilateral DBS ON at t = 4w OFF (End Sham).
Fig. 2: Representation of active cathodal contacts in two planes for each of the ten patients presented in this series, superimposed upon the deterministic tractographic-defined target medial forebrain bundle (red/orange).
Fig. 3: MADRS scores recorded over 5 years, reported for 1, 2, and 5 years.
Fig. 4: Structural connectivity of the supero-lateral medial forebrain bundle.

Similar content being viewed by others

References

  1. Deuschl G, Elble R. Essential tremor-neurodegenerative or nondegenerative disease towards a working definition of ET. Mov Disord. 2009;24:2033–41.

    Article  PubMed  Google Scholar 

  2. Louis ED. Essential tremor. Lancet Neurol. 2005;4:100–10.

    Article  PubMed  Google Scholar 

  3. Louis ED. Clinical practice. Essential tremor. N Engl J Med. 2001;345:887–91.

    Article  CAS  PubMed  Google Scholar 

  4. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64:461–467.

    Article  PubMed  Google Scholar 

  5. Holtzheimer PE, Kelley ME, Gross RE, Filkowski MM, Garlow SJ, Barrocas A, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch Gen Psychiatry. 2012;69:150–158.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.

    Article  CAS  PubMed  Google Scholar 

  7. Holtzheimer PE, Husain MM, Lisanby SH, Taylor SF, Whitworth LA, McClintock S, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4:839–49.

    Article  PubMed  Google Scholar 

  8. Maloney DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskander EN, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65:267–75.

    Article  Google Scholar 

  9. Dougherty DD, Rezai AR, Carpenter LL, Howland RH, Bhati MT, O’Rearson JP, et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol Psychiatry. 2015;78:240–8.

    Article  PubMed  Google Scholar 

  10. Bergfeld IO, Mantione M, Hoogendoorn MLC, Ruhe HG, Notten P, van Laarhoven J, et al. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2016;73:456–64.

    Article  PubMed  Google Scholar 

  11. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67:110–6.

    Article  PubMed  Google Scholar 

  12. Schlaepfer TE, Bewernick BH, Kayser S, Madler B, Coenen VA. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol Psychiatry. 2013;73:1204–12.

    Article  PubMed  Google Scholar 

  13. Bewernick BH, Kayser S, Gippert SM, Switala C, Coenen VA, Schlaepfer TE. Deep brain stimulation to the medial forebrain bundle for depression- long-term outcomes and a novel data analysis strategy. Brain Stimul. 2017;10:664–71.

    Article  PubMed  Google Scholar 

  14. Coenen VA, Bewernick BH, Kayser S, Kilian H, Boström J, Greschus S, et al. Superolateral medial forebrain bundle deep brain stimulation in major depression: a gateway trial. Neuropsychopharmacology. 2019;44:1224–32.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gálvez JF, Keser Z, Mwangi B, Ghouse A, Fenoy AJ, Schulz PE, et al. The medial forebrain bundle as a deep brain stimulation target for treatment resistant depression: a review of published data. Prog Neuropsychopharmacol Biol Psychiatry. 2015;58:59–70.

    Article  PubMed  Google Scholar 

  16. Nestler EJ, Carlezon WA Jr. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.

    Article  CAS  PubMed  Google Scholar 

  17. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25.

    Article  CAS  PubMed  Google Scholar 

  18. Fenoy AJ, Schulz PE, Selvaraj S, Burrows CL, Spiker D, Cao B, et al. Deep brain stimulation of the medial forebrain bundle: distinctive responses in resistant depression. J Affect Disord. 2016;203:143–51.

    Article  PubMed  Google Scholar 

  19. Fenoy AJ, Schulz PE, Selvaraj S, Burrows CL, Zunta-Soares G, Durkin K, et al. A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression. Transl Psychiatry. 2018;8:111–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured clinical interview for DSM-IV axis I disorders (SCID I). American Psychiatric Press, Washington DC; 1997.

  21. Hamilton M. Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol. 1967;6:278–96.

    Article  CAS  PubMed  Google Scholar 

  22. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–9.

    Article  CAS  PubMed  Google Scholar 

  23. Jones SH, Thornicroft G, Coffey M, Dunn G. A brief mental health outcome scale-reliability and validity of the Global Assessment of Functioning (GAF). Br J Psychiatry. 1995;166:654–9.

    Article  CAS  PubMed  Google Scholar 

  24. First MB, Spitzer RL, Gibbon M, Williams JBW, Benjamin LS. Structured clinical interview for DSM-IV Axis II personality disorders (SCID II). American Psychiatric Press, Washington, DC; 1996.

  25. Millon T, Millon C, David R. Millon Clinical Multiaxial Inventory-III (MCMI-III) manual. National Computer Systems, Minneapolis, MN; 1994.

  26. Hamilton M. Hamilton Anxiety Scale. In: Guy W editor. ECDEU Assessment manual for psychopharmacology. RevEd, Rockville, MD; 1976. p. 193–8.

  27. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–35.

    Article  CAS  PubMed  Google Scholar 

  28. Busner J, Targum SD. The clinical global impressions scale: applying a research tool in clinical practice. Psychiatry. 2007;4:28–37.

    PubMed  PubMed Central  Google Scholar 

  29. Coenen VA, Panksepp J, Hurwitz TA, Urbach H, Mädler B. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J Neuropsychiatry Clin Neurosci. 2012;24:223–36.

    Article  PubMed  Google Scholar 

  30. Fenoy AJ, Simpson RK Jr. Management of device-related wound com- plications in deep brain stimulation surgery. J Neurosurg. 2012;11:1324–32.

    Article  Google Scholar 

  31. Fenoy AJ, Simpson RK Jr. Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg. 2014;120:132–9.

    Article  PubMed  Google Scholar 

  32. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS Scales. J Pers Soc Psychol. 1988;54:1063–70.

    Article  CAS  PubMed  Google Scholar 

  33. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage. 2009;45:S173–S186. Suppl.

    Article  PubMed  Google Scholar 

  34. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17:143–55.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jenkinson M, Beckmann CF, Behrens TE, Wollrich MW, Smith SM. Fsl. Neuroimage. 2012;62:782–90.

    Article  PubMed  Google Scholar 

  36. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage. 2007;34:144–55.

    Article  CAS  PubMed  Google Scholar 

  37. Nowacki A, Schlaier J, Debove I, Pollo C. Validation of diffusion tensor imaging tractography to visualize the dentatorubothalamic tract for surgical planning. J Neurosurg. 2018;130:99–108.

    Article  PubMed  Google Scholar 

  38. Butson CR, Cooper SE, Henderson JM, McIntyre CC. Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage. 2007;34:661–70.

    Article  PubMed  Google Scholar 

  39. Perez-Caballero L, Perez-Egea R, Romero-Grimaldo C, Puigdemont D, Molet J, Caso J-R, et al. Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs. Mol Psychiatry. 2014;19:607–14.

    Article  CAS  PubMed  Google Scholar 

  40. Chang SY, Shon YM, Agnesi F, Lee KH. Microthalamotomy effect during deep brain stimulation: potential involvement of adenosine and glutamate efflux. In: Proceedings of the conference of IEEE Engineering in Medicine and Biology Society. 2009; p. 3294–97.

  41. Fenoy AJ, Goetz L, Chabardès S, Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci Ther. 2014;20:191–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Riva-Posse P, Choi KS, Holtzheimer PE, McIntyre CC, Gross RE, Chaturvedi A, et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2014;76:963–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rao VR, Sellers KK, Wallace DL, Lee MB, Bijanzadeh M, Sani OG, et al. Direct electrical stimulation of the lateral orbitofronral cortex acutely improves mood in individuals with symptoms of depression. Curr Biol. 2018;28:3893–902.

    Article  CAS  PubMed  Google Scholar 

  44. Coenen VA, Schlaepfer TE, Sajonz B, Döbrössy M, Kaller CP, Urbach H, et al. Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders. Neuroimage Clin. 2020;25:102165.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coenen VA, Schlaepfer TE, Maedler B, Panksepp J. Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev. 2011;35:1971–81.

    Article  PubMed  Google Scholar 

  46. Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R, Vander Weele CM, et al. Mesolimbic dopamine signals the value of work. Nat Neurosci. 2016;19:117–26.

    Article  CAS  PubMed  Google Scholar 

  47. Ikemoto S. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev. 2010;35:129–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Coenen VA, Madler B, Schlaepfer TE. Reply to: Medial Forebrain bundle stimulation—speed access to an old or entry into a new depression neurocircuit? Biol Psychol. 2013;74:e45–e46.

    Article  Google Scholar 

  49. Castro DC, Berridge KC. Advances in the neurobiological bases for food “liking” versus “wanting.”. Physiol Behav. 2014;136:22–30.

    Article  CAS  PubMed  Google Scholar 

  50. Berridge KC, Kringelbach ML. Pleasure systems in the brain. Neuron. 2015;86:646–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Döbrössy MD, Furlanetti LL, Coenen VA. Electrical stimulation of the medial forebrain bundle in pre-clinical studies of psychiatric disorders. Neurosci Biobehav Rev. 2015;49:32–42.

    Article  PubMed  Google Scholar 

  52. Karreman M, Westerink BH, Moghaddam B. Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum. J Neurochem. 1996;67:601–7.

    Article  CAS  PubMed  Google Scholar 

  53. Helbing C, Brocka M, Scherf T, Lippert MT, Angenstein F. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway. J Cereb Blood Flow Metab. 2016;36:2177–93.

    Article  CAS  PubMed  Google Scholar 

  54. Settell ML, Testini P, Cho S, Lee JH, Blaha CD, Jo HJ, et al. Functional circuitry effect of ventral tegmental area deep brain stimulation: imaging and neurochemical evidence of mesocortical and mesolimbic pathway modulation. Front Neurosci. 2017;11:104.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schaltenbrand G, Wahren W. Atlas for stereotaxy of the human brain. 2nd ed. New York: Thieme; 1977.

Download references

Acknowledgements

The Center of Excellence on Mood Disorders is funded by the Pat Rutherford Jr. Chair in Psychiatry, John S. Dunn Foundation, and Anne and Don Fizer Foundation Endowment for Depression Research.

Author information

Authors and Affiliations

Authors

Contributions

AJF was responsible for preparation and editing of all drafts and figures of this manuscript; PES, MS, SS, CLB, BA, JQ, JCS contributed to editing of final manuscript draft; CRC contributed to final figure production.

Corresponding author

Correspondence to Albert J. Fenoy.

Ethics declarations

Competing interests

AJF serves as a consultant for Medtronic, Inc and receives grant support from the NIH/NINDS (1R01NS113893-01A1). PES is a consultant for Lilly, Acadia, and Biogen, has grant support from the Weston Brain Foundation, the Frontotemporal Disease association, and the Kleberg Foundation, and has NIH support on unrelated projects. SS has received grants/research support from NIH/NIMH (1R21MH119441-01A1) and SAMHSA (6H79FG000470-01M003); research support from Compass Pathways, LivaNova, Janssen; speaking honoraria from the British Medical Journal Publishing Group and copyright with Cambridge University Press. JQ receives research support from the NIH/NIMH (1R21MH117636-01A1), the Faillace Department of Psychiatry and Behavioral Sciences, and LivaNova; has speaker bureau membership with Myriad Neuroscience, Janssen Pharmaceuticals, and Abbvie; is consultant for Eurofarma; is stockholder at Instituto de Neurociencias Dr. Joao Quevedo; and receives copyrights from Artmed Editora, Artmed Panamericana, and Elsevier/Academic Press. JCS receives grant/research support from Bristol-Meyers Squibb, Forest Laboratories, Merck and Elan Pharmaceuticals, and serves as a consultant for Pfizer, Abbot, and Astellas Pharma, Inc. MS, CRC, and CLB reported no biomedical financial interests or potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenoy, A.J., Schulz, P.E., Sanches, M. et al. Deep brain stimulation of the “medial forebrain bundle”: sustained efficacy of antidepressant effect over years. Mol Psychiatry 27, 2546–2553 (2022). https://doi.org/10.1038/s41380-022-01504-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01504-y

This article is cited by

Search

Quick links