Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global DNA methylation changes in adults with attention deficit-hyperactivity disorder and its comorbidity with bipolar disorder: links with polygenic scores

Subjects

Abstract

Genetic and environmental factors contribute to the etiology of Attention Deficit-Hyperactivity Disorder (ADHD). In this sense, the study of epigenetic mechanisms could contribute to the understanding of the disorder’s neurobiology. Global DNA methylation (GMe) evaluated through 5-methylcytosine levels could be a promising epigenetic biomarker to capture long-lasting biological effects in response to environmental and hormonal changes. We conducted the first assessment of GMe levels in subjects with ADHD (n = 394) and its main comorbidities in comparison to populational controls (n = 390). Furthermore, given the high genetic contribution to ADHD (heritability of 80%), polygenic risk scores (PRS) were calculated to verify the genetic contribution to GMe levels in ADHD and the comorbidities associated with GMe levels. The GMe levels observed in patients were lower than controls (P = 1.1e-8), with women being significantly less globally methylated than men (P = 0.002). Regarding comorbidities, the presence of bipolar disorder (BD) among patients with ADHD was associated with higher methylation levels compared to patients with ADHD without BD (P = 0.031). The results did not change when pharmacological treatment was accounted for in the analyses. The ADHD and BD most predictive PRSs were negatively (P = 0.0064) and positively (P = 0.0042) correlated with GMe, respectively. This study is the first to report an association between GMe, ADHD, and its comorbidity with BD and associations between PRSs for specific psychiatric disorders and GMe. Our findings add to previous evidence that GMe may be a relevant piece in the psychiatric disorders’ etiological landscape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Case-control comparisons stratified by bipolar disorder (BD).

Similar content being viewed by others

References

  1. Fayyad J, De Graaf R, Kessler R, Alonso J, Angermeyer M, Demyttenaere K, et al. Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br J Psychiatry. 2007;190:402–9.

    Article  CAS  PubMed  Google Scholar 

  2. Vitola ES, Bau CHD, Salum GA, Horta BL, Quevedo L, Barros FC, et al. Exploring DSM-5 ADHD criteria beyond young adulthood: Phenomenology, psychometric properties and prevalence in a large three-decade birth cohort. Psychol Med. 2017;47:744–54.

    Article  CAS  PubMed  Google Scholar 

  3. Willcutt EG. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics. 2012;9:490–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Simon V, Czobor P, Bálint S, Mészáros Á, Bitter I. Prevalence and correlates of adult attention-deficit hyperactivity disorder: Meta-analysis. Br J Psychiatry. 2009;194:204–11.

    Article  PubMed  Google Scholar 

  5. APA APA. Diagnostic and statistical manual of mental disorders-: DSM-5. 5th ed. Washington, DC; 2013.

  6. Luo Y, Weibman D, Halperin JM, Li X. A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Front Hum Neurosci. 2019;13:1–12.

    Article  CAS  Google Scholar 

  7. Piñeiro-Dieguez B, Balanzá-Martínez V, García-García P, Soler-López B, Domingo MA, Labarra JDA, et al. Psychiatric comorbidity at the time of diagnosis in adults with ADHD: The CAT study. J Atten Disord. 2016;20:1066–75.

    Article  PubMed  Google Scholar 

  8. Sobanski E, Brüggemann D, Alm B, Kern S, Deschner M, Schubert T, et al. Psychiatric comorbidity and functional impairment in a clinically referred sample of adults with attention-deficit/hyperactivity disorder (ADHD). Eur Arch Psychiatry Clin Neurosci. 2007;257:371–7.

    Article  PubMed  Google Scholar 

  9. Garcia CR, Bau CHD, Silva KL, Callegari-jacques SM, Salgado CAI, Fischer AG, et al. The burdened life of adults with ADHD: Impairment beyond comorbidity. Eur Psychiatry. 2012;27:309–13.

    Article  CAS  PubMed  Google Scholar 

  10. Kessler RC, Ph D, Adler L, Barkley R, Ph D, Biederman J, et al. The prevalence and correlates of adult ADHD in the United States: Results from the national comorbidity survey replication. Am J Psychiatry. 2006;163:716–23.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brikell I, Kuja-halkola R, Larsson H. Heritability of attention-deficit hyperactivity disorder in adults. Am J Med Genet Part B Neuropsychiatr Genet. 2015;168:406–13.

    Article  Google Scholar 

  12. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75.

    Article  CAS  PubMed  Google Scholar 

  13. Rovira P, Demontis D, Sánchez-Mora C, Zayats T, Klein M, Mota NR, et al. Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2020;45:1617–26.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Toth M. Mechanisms of non-genetic inheritance and psychiatric disorders. Neuropsychopharmacology. 2015;40:129–40.

    Article  PubMed  Google Scholar 

  15. Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry. 2019;24:562–75.

    Article  CAS  PubMed  Google Scholar 

  16. Kim JH, Kim JY, Lee J, Jeong GH, Lee E, Lee S, et al. Environmental risk factors, protective factors, and peripheral biomarkers for ADHD: an umbrella review. Lancet Psychiatry. 2020;7:955–70.

    Article  PubMed  Google Scholar 

  17. Jaenisch R, Bird A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.

    Article  CAS  PubMed  Google Scholar 

  18. Lee HS, Herceg Z. Nutritional epigenome and metabolic syndrome. Second Edi. Elsevier Inc.; 2017.

  19. Gouil Q, Keniry A. Latest techniques to study DNA methylation. Essays Biochem. 2019;63:639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurdyukov S, Bullock M. DNA Methylation Analysis: Choosing the right method. Biology. 2016;5:1–21.

    Article  CAS  Google Scholar 

  21. Chen Y, Ozturk NC, Zhou FC. DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS One. 2013;8:1–11.

    CAS  Google Scholar 

  22. Müller D, Grevet EH, da Silva BS, Charão MF, Rovaris DL, Bau CHD. The neuroendocrine modulation of global DNA methylation in neuropsychiatric disorders. Mol Psychiatry. 2020;26:66–9.

  23. Breton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, et al. Small-magnitude effect sizes in epigenetic end points are important in children’s environmental health studies: The children’s environmental health and disease prevention research center’s epigenetics working group. Environ Health Perspect. 2017;125:511–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo Y, Lu X, Xie H. Dynamic alu methylation during normal development, aging, and tumorigenesis. Biomed Res Int. 2014;2014:784706.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bönsch D, Wunschel M, Lenz B, Janssen G, Weisbrod M, Sauer H. Methylation matters? Decreased methylation status of genomic DNA in the blood of schizophrenic twins. Psychiatry Res. 2012;198:533–7.

    Article  PubMed  CAS  Google Scholar 

  26. Bromberg A, Levine J, Nemetz B, Belmaker RH, Agam G. No association between global leukocyte DNA methylation and homocysteine levels in schizophrenia patients. Schizophr Res. 2008;101:50–57.

    Article  CAS  PubMed  Google Scholar 

  27. Huzayyin AA, Andreazza AC, Turecki G, Cruceanu C, Rouleau GA, Alda M, et al. Decreased global methylation in patients with bipolar disorder who respond to lithium. Int J Neuropsychopharmacol. 2014;17:561–9.

    Article  CAS  PubMed  Google Scholar 

  28. Melas PA, Rogdaki M, Ösby U, Schalling M, Lavebratt C, Ekström TJ. Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J. 2012;26:2712–8.

    Article  CAS  PubMed  Google Scholar 

  29. Backlund L, Wei YBin, Martinsson L, Melas PA, Liu JJ, Mu N, et al. Mood stabilizers and the influence on global leukocyte DNA methylation in bipolar disorder. Mol Neuropsychiatry. 2015;1:76–81.

    PubMed  PubMed Central  Google Scholar 

  30. Soeiro-De-Souza MG, Andreazza AC, Carvalho AF, Machado-Vieira R, Young LT, Moreno RA. Number of manic episodes is associated with elevated DNA oxidation in bipolar i disorder. Int J Neuropsychopharmacol. 2013;16:1505–12.

    Article  CAS  PubMed  Google Scholar 

  31. Meijer M, Klein M, Hannon E, van der Meer D, Hartman C, Oosterlaan J, et al. Genome-wide DNA methylation patterns in persistent attention-deficit/hyperactivity disorder and in association with impulsive and callous traits. Front Genet. 2020;11:16.

  32. Mooney MA, Ryabinin P, Wilmot B, Bhatt P, Mill J, Nigg JT. Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Transl Psychiatry. 2020;10:1–12.

    Article  CAS  Google Scholar 

  33. APA APA. Diagnostic and statistical manual of mental disorders - DSM-IV. vol. 189. Fourth Edi. Washington, DC: American Psychiatric Association; 1994.

  34. Grevet EH, Bau CHD, Salgado CAI, Ficher A, Victor MM, Garcia C, et al. Interrater reliability for diagnosis in adults of attention deficit hyperactivity disorder and oppositional defiant disorder using K-SADS-E. Arq Neuropsiquiatr. 2005;63:307–10.

    Article  PubMed  Google Scholar 

  35. Karam RG, Breda V, Picon FA, Rovaris DL, Victor MM, Salgado CAI, et al. Persistence and remission of ADHD during adulthood: A 7-year clinical follow-up study. Psychol Med. 2015;45:2045–56.

    Article  CAS  PubMed  Google Scholar 

  36. Lahiri DK, Nurnberger JI. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19:5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramsahoye BH. Measurement of genome wide DNA methylation by reversed-phase high-performance liquid chromatography. Methods. 2002;27:156–61.

  38. Rozhon W, Baubec T, Mayerhofer J, Scheid OM, Jonak C. Rapid quantification of global DNA methylation by isocratic cation exchange high-performance liquid chromatography. Biochem Anal. 2008;375:354–60.

  39. Barbosa E, dos Santos ALA, Peteffi GP, Schneider A, Müller D, Rovaris D, et al. Increase of global DNA methylation patterns in beauty salon workers exposed to low levels of formaldehyde. Environ Sci Pollut Res. 2019;26:1304–14.

    Article  CAS  Google Scholar 

  40. Lam M, Awasthi S, Watson HJ, Goldstein J, Panagiotaropoulou G, Trubetskoy V, et al. RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics. 2020;36:930–3.

    Article  CAS  PubMed  Google Scholar 

  41. Choi SW, O’Reilly PF. PRSice-2: Polygenic risk score software for biobank-scale data. Gigascience. 2019;8:giz082.

  42. Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. 2004;68:196–204.

    Article  CAS  PubMed  Google Scholar 

  43. Shimabukuro M, Sasaki T, Imamura A, Tsujita T, Fuke C, Umekage T, et al. Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: A potential link between epigenetics and schizophrenia. J Psychiatr Res. 2007;41:1042–6.

    Article  PubMed  Google Scholar 

  44. Singmann P, Shem-Tov D, Wahl S, Grallert H, Fiorito G, Shin SY, et al. Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenetics Chromatin. 2015;8:1–13.

    Article  CAS  Google Scholar 

  45. Suderman M, Simpkin A, Sharp G, Gaunt T, Lyttleton O, Mcardle W, et al. Sex-associated autosomal DNA methylation differences are wide-spread and stable throughout childhood. BioRvix. 2017. 2017.

  46. Khramtsova EA, Davis LK, Stranger BE. The role of sex in the genomics of human complex traits. Nat Rev Genet. 2019;20:173–90.

    Article  CAS  PubMed  Google Scholar 

  47. Hemmingsen CH, Kjaer SK, Jezek AH, Verhulst FC, Pagsberg AK, Kamper M, et al. Maternal use of hormonal contraception and risk of childhood ADHD: a nationwide population ‑ based cohort study. Eur J Epidemiol. 2020;35:795–805.

    Article  CAS  PubMed  Google Scholar 

  48. Ulrich CM, Toriola AT, Koepl LM, Sandifer T, Poole EM, Duggan C, et al. Metabolic, hormonal and immunological associations with global DNA methylation among postmenopausal women. Epigenetics. 2012;7:1020–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kovalchuk O, Tryndyak VP, Montgomery B, Boyko A, Kutanzi K, Zemp F, et al. Estrogen-induced rat breast carcinogenesis is characterized by alterations in DNA methylation, histone modifications and aberrant microRNA expression. Cell Cycle. 2007;6:2010–8.

    Article  CAS  PubMed  Google Scholar 

  50. Boyne DJ, Friedenreich CM, McIntyre JB, Stanczyk FZ, Courneya KS, King WD. Endogenous sex hormone exposure and repetitive element DNA methylation in healthy postmenopausal women. Cancer Causes Control. 2017;28:1369–79.

    Article  PubMed  Google Scholar 

  51. Iwasaki M, Ono H, Kuchiba A, Kasuga Y, Yokoyama S, Onuma H, et al. Association of postmenopausal endogenous sex hormones with global methylation level of leukocyte DNA among Japanese women. BMC Cancer. 2012;12:1–9.

    Article  CAS  Google Scholar 

  52. Burghardt KJ, Khoury AS, Msallaty Z, Yi Z, Seyoum B. Antipsychotic medications and DNA methylation in schizophrenia and bipolar disorder: a systematic review. Pharmacotherapy. 2020;40:331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li S, Yang Q, Hou Y, Jiang T, Zong L, Wang Z, et al. Hypomethylation of LINE-1 elements in schizophrenia and bipolar disorder. J Psychiatr Res. 2018;107:68–72.

    Article  PubMed  Google Scholar 

  54. Li M, Arcy CD, Li X, Zhang T, Joober R, Meng X. What do DNA methylation studies tell us about depression? A systematic review. Transl Psychiatry. 2019;9:1–14.

  55. Murata Y, Ikegame T, Koike S, Saito T, Ikeda M, Sasaki T, et al. Global DNA hypomethylation and its correlation to the betaine level in peripheral blood of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:1–6.

    Article  CAS  Google Scholar 

  56. Rao JS, Keleshian VL, Klein S, Rapoport SI. Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry. 2012;2:e132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bromberg A, Bersudsky Y, Levine J, Agam G. Global leukocyte DNA methylation is not altered in euthymic bipolar patients. J Affect Disord. 2009;118:234–9.

    Article  CAS  PubMed  Google Scholar 

  58. Ceylan D, Scola G, Tunca Z, Isaacs-Trepanier C, Can G, Andreazza AC, et al. DNA redox modulations and global DNA methylation in bipolar disorder: Effects of sex, smoking and illness state. Psychiatry Res. 2018;261:589–96.

    Article  CAS  PubMed  Google Scholar 

  59. Markopoulou K, Fischer S, Papadopoulos A, Poon L, Rane LJ, Fekadu A, et al. Comparison of hypothalamo-pituitary-adrenal function in treatment resistant unipolar and bipolar depression. Transl Psychiatry. 2021;11:4–11.

    Article  CAS  Google Scholar 

  60. van Dongen J, Zilhão NR, Sugden K, Heijmans BT, BIOS Consortium, Hannon EJ, Mill J, et al. Epigenome-wide association study of attention-deficit/hyperactivity disorder symptoms in adults. Biol Psychiatry. 2019;86:599–607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. D’Agati E, Pitzianti M, Balestrieri E, Matteucci C, Vallebona PS, Pasini A. First evidence of HERV-H transcriptional activity reduction after methylphenidate treatment in a young boy with ADHD. N Microbiol. 2016;39:237–9.

    Google Scholar 

  62. Cipriani C, Pitzianti MB, Matteucci C, D’Agati E, Miele MT, Rapaccini V, et al. The decrease in human endogenous retrovirus-H activity runs in parallel with improvement in ADHD symptoms in patients undergoing methylphenidate therapy. Int J Mol Sci. 2018;19:1–12.

    Google Scholar 

  63. Schulz WA, Steinhoff C, Florl AR. Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol. 2006;310:211–50.

    CAS  PubMed  Google Scholar 

  64. Dewannieux M, Heidmann T. Endogenous retroviruses: Acquisition, amplification and taming of genome invaders. Curr Opin Virol. 2013;3:646–56.

    Article  CAS  PubMed  Google Scholar 

  65. Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry. 2019;9:1–10.

    Article  CAS  Google Scholar 

  66. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work received financial supports from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 431472/2018-1; 424041/2016-2, 466722/2014-1, 476529/2012-3, and 484403/2007-9), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES AUX-PE-PROEX-1234/2011 and 376/2009 and financial code 001), Brain & Behavior Research Foundation (grant number 29056/2020), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS - Pesquisador Gaúcho (PqG) 19/2551-0001731-6 and 19/2551-0001668-9), and Hospital de Clínicas de Porto Alegre (FIPE-HCPA 100358, 08543 and 05451). Also, DM received a doctoral scholarship from CNPq.

Author information

Authors and Affiliations

Authors

Contributions

DM: Conceptualization, methodology, formal analysis, writing—original draft, writing—review and editing. EHG: Conceptualization, resources, writing—review and editing, funding acquisition. NAFS: Methodology, formal analysis, writing—review and editing. CEB: Methodology, formal analysis, writing—original draft, writing—review and editing. EB: Methodology, writing—review and editing. ESV: Methodology, formal analysis, writing—original draft, writing—review and editing. MFC: Methodology, formal analysis, writing—original draft, writing—review and editing. RL: Methodology, formal analysis, writing—original draft, writing—review and editing. LAR: Methodology, writing—review and editing. JKNR: Methodology, formal analysis, writing—review and editing. BSS: Software, formal analysis, writing—review and editing, funding acquisition. DLR: Conceptualization, software, methodology, resources, writing—original draft, writing—review and editing, supervision, funding acquisition. CHDB: Conceptualization, resources, writing—original draft, writing—review and editing, supervision, funding acquisition.

Corresponding authors

Correspondence to Diego L. Rovaris or Claiton H. D. Bau.

Ethics declarations

Competing interests

Dr. Grevet was on the speaker’s bureau for Novartis and Shire for 3 years. Dr. Rohde has received Honoraria, has been on the speakers’ bureau/advisory board and/or has acted as a consultant for Eli-Lilly, Janssen-Cilag, Medice, Novartis and Shire for 3 years. He receives authorship royalties from Oxford Press and ArtMed. The ADHD and Juvenile Bipolar Disorder Outpatient Programs chaired by him received unrestricted educational and research support from the following pharmaceutical companies for 3 years: Eli-Lilly, Janssen-Cilag, Novartis, and Shire. All other authors report no potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, D., Grevet, E.H., Figueira da Silva, N.A. et al. Global DNA methylation changes in adults with attention deficit-hyperactivity disorder and its comorbidity with bipolar disorder: links with polygenic scores. Mol Psychiatry 27, 2485–2491 (2022). https://doi.org/10.1038/s41380-022-01493-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01493-y

This article is cited by

Search

Quick links