Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Counteracting epigenetic mechanisms regulate the structural development of neuronal circuitry in human neurons

Abstract

Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ASH1L is expressed throughout development in vivo and in vitro.
Fig. 2: ASH1L modulates neuronal morphogenesis and soma size in cortical excitatory deeper layer neurons but does not alter cell fate in vitro.
Fig. 3: ASH1L phenotype is rescued by EZH2 inhibition and correlates with downregulation of NTRK2.
Fig. 4: Loss of ASH1L reduces CREB activation by BDNF.

Similar content being viewed by others

References

  1. Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic regulations in neuropsychiatric disorders. Front Genet. 2019;10:268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lamonica JM, Zhou Z. Disentangling chromatin architecture to gain insights into the etiology of brain disorders. Curr Opin Genet Dev. 2019;55:76–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA, et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism. 2013;4:36.

    Article  PubMed  PubMed Central  Google Scholar 

  4. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang T, Guo H, Xiong B, Stessman HA, Wu H, Coe BP, et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun. 2016;7:13316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA. 2015;314:895–903.

    Article  CAS  PubMed  Google Scholar 

  7. Faundes V, Newman WG, Bernardini L, Canham N, Clayton-Smith J, Dallapiccola B, et al. Histone lysine methylases and demethylases in the landscape of human developmental disorders. Am J Hum Genet. 2018;102:175–87.

    Article  CAS  PubMed  Google Scholar 

  8. Faundes V, Santa Maria L, Morales P, Curotto B, Alliende MA. [Microarrays in 236 patients with neurodevelopmental disorders and congenital abnormalities]. Rev Med Chil. 2017;145:854–61.

    Article  PubMed  Google Scholar 

  9. Stessman HA, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49:515–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Okamoto N, Miya F, Tsunoda T, Kato M, Saitoh S, Yamasaki M, et al. Novel MCA/ID syndrome with ASH1L mutation. Am J Med Genet A. 2017;173:1644–8.

    Article  CAS  PubMed  Google Scholar 

  11. Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell. 2017;171:34–57.

    Article  CAS  PubMed  Google Scholar 

  12. Miyazaki H, Higashimoto K, Yada Y, Endo TA, Sharif J, Komori T, et al. Ash1l methylates Lys36 of histone H3 independently of transcriptional elongation to counteract polycomb silencing. PLoS Genet. 2013;9:e1003897.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang C, Zhu B. Roles of H3K36-specific histone methyltransferases in transcription: antagonizing silencing and safeguarding transcription fidelity. Biophys Rep. 2018;4:170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Corley M, Kroll KL. The roles and regulation of Polycomb complexes in neural development. Cell Tissue Res. 2015;359:65–85.

    Article  CAS  PubMed  Google Scholar 

  15. Pereira JD, Sansom SN, Smith J, Dobenecker MW, Tarakhovsky A, Livesey FJ. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci USA. 2010;107:15957–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qi C, Liu S, Qin R, Zhang Y, Wang G, Shang Y, et al. Coordinated regulation of dendrite arborization by epigenetic factors CDYL and EZH2. J Neurosci. 2014;34:4494–508.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shi Y, Kirwan P, Smith J, Robinson HP, Livesey FJ. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci. 2012;15:477–86.

    Article  CAS  PubMed  Google Scholar 

  18. Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7:1836–46.

    Article  CAS  PubMed  Google Scholar 

  19. Lizarraga SB, Ma L, Maguire AM, van Dyck LI, Wu Q, Ouyang Q, et al. Human neurons from Christianson syndrome iPSCs reveal mutation-specific responses to rescue strategies. Sci Transl Med. 2021;13:580:1–14.

  20. Laugesen A, Hojfeldt JW, Helin K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol Cell. 2019;74:8–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez A, Moya-Alvarado G, Gonzalez-Billaut C, Bronfman FC. Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor. Cytoskeleton. 2016;73:612–28.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshii A, Constantine-Paton M. Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol. 2010;70:304–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508:199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA. Feeder-independent culture of human embryonic stem cells. Nat Methods. 2006;3:637–46.

    Article  CAS  PubMed  Google Scholar 

  27. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  28. Boulting GL, Kiskinis E, Croft GF, Amoroso MW, Oakley DH, Wainger BJ, et al. A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol. 2011;29:279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ouyang Q, Lizarraga SB, Schmidt M, Yang U, Gong J, Ellisor D, et al. Christianson syndrome protein NHE6 modulates TrkB endosomal signaling required for neuronal circuit development. Neuron. 2013;80:97–112.

    Article  CAS  PubMed  Google Scholar 

  30. Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA. 2012;109:21360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pillai AG, de Jong D, Kanatsou S, Krugers H, Knapman A, Heinzmann JM, et al. Dendritic morphology of hippocampal and amygdalar neurons in adolescent mice is resilient to genetic differences in stress reactivity. PLoS ONE. 2012;7:e38971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T, et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol. 2007;27:8466–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De I, Muller CW. Unleashing the power of ASH1L methyltransferase. Structure. 2019;27:727–8.

    Article  CAS  PubMed  Google Scholar 

  34. Bonfante E, Koenig MK, Adejumo RB, Perinjelil V, Riascos RF. The neuroimaging of Leigh syndrome: case series and review of the literature. Pediatr Radio. 2016;46:443–51.

    Article  Google Scholar 

  35. Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC, et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry. 2011;168:904–12.

    Article  PubMed  Google Scholar 

  36. Shen W, Krautscheid P, Rutz AM, Bayrak-Toydemir P, Dugan SL. De novo loss-of-function variants of ASH1L are associated with an emergent neurodevelopmental disorder. Eur J Med Genet. 2019;62:55–60.

    Article  PubMed  Google Scholar 

  37. Guo H, Wang T, Wu H, Long M, Coe BP, Li H, et al. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol Autism. 2018;9:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu T, Liang C, Li D, Tian M, Liu S, Gao G, et al. Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1alpha. Sci Rep. 2016;6:26597.

    Article  CAS  Google Scholar 

  39. Seltzer LE, Paciorkowski AR. Genetic disorders associated with postnatal microcephaly. Am J Med Genet C Semin Med Genet. 2014;166C:140–55.

    Article  PubMed  Google Scholar 

  40. Gao Y, Duque-Wilckens N, Aljazi MB, Wu Y, Moeser AJ, Mias GI, et al. Loss of histone methyltransferase ASH1L in the developing mouse brain causes autistic-like behaviors. Commun Biol. 2021;4:756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brinkmeier ML, Geister KA, Jones M, Waqas M, Maillard I, Camper SA. The histone methyltransferase gene absent, small, or homeotic discs-1 like is required for normal hox gene expression and fertility in mice. Biol Reprod. 2015;93:121.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang C, Xu L, Zheng X, Liu S, Che F. Role of Ash1l in tourette syndrome and other neurodevelopmental disorders. Dev Neurobiol. 2021;81:71–91.

  43. Menon S, Gupton SL. Building blocks of functioning brain: cytoskeletal dynamics in neuronal development. Int Rev Cell Mol Biol. 2016;322:183–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ren Y, Suter DM. Increase in growth cone size correlates with decrease in neurite growth rate. Neural Plast. 2016;2016:3497901.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huang G, Chen S, Chen X, Zheng J, Xu Z, Doostparast Torshizi A, et al. Uncovering the functional link between SHANK3 deletions and deficiency in neurodevelopment using iPSC-derived human neurons. Front Neuroanat. 2019;13:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rooney GE, Goodwin AF, Depeille P, Sharir A, Schofield CM, Yeh E, et al. Human iPS cell-derived neurons uncover the impact of increased Ras signaling in costello syndrome. J Neurosci. 2016;36:142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Albert M, Kalebic N, Florio M, Lakshmanaperumal N, Haffner C, Brandl H, et al. Epigenome profiling and editing of neocortical progenitor cells during development. EMBO J. 2017;36:2642–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deinhardt K, Chao MV. Shaping neurons: long and short range effects of mature and proBDNF signalling upon neuronal structure. Neuropharmacology. 2014;76:603–9.

    Article  CAS  PubMed  Google Scholar 

  49. Deinhardt K, Chao MV. Trk receptors. Handb Exp Pharm. 2014;220:103–19.

    Article  CAS  Google Scholar 

  50. van Mierlo G, Veenstra GJC, Vermeulen M, Marks H. The complexity of PRC2 subcomplexes. Trends Cell Biol. 2019;29:660–71.

    Article  PubMed  Google Scholar 

  51. Eram MS, Kuznetsova E, Li F, Lima-Fernandes E, Kennedy S, Chau I, et al. Kinetic characterization of human histone H3 lysine 36 methyltransferases, ASH1L and SETD2. Biochim Biophys Acta. 2015;1850:1842–8.

    Article  CAS  PubMed  Google Scholar 

  52. Balbach ST, Orkin SH. An achilles’ heel for MLL-rearranged leukemias: writers and readers of H3 lysine 36 dimethylation. Cancer Disco. 2016;6:700–2.

    Article  CAS  Google Scholar 

  53. Shao GB, Chen JC, Zhang LP, Huang P, Lu HY, Jin J, et al. Dynamic patterns of histone H3 lysine 4 methyltransferases and demethylases during mouse preimplantation development. In Vitro. Cell Dev Biol Anim. 2014;50:603–13.

    Article  CAS  Google Scholar 

  54. Li J, Ahn JH, Wang GG. Understanding histone H3 lysine 36 methylation and its deregulation in disease. Cell Mol Life Sci. 2019;76:2899–916.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu L, Li Q, Wong SH, Huang M, Klein BJ, Shen J, et al. ASH1L links histone H3 lysine 36 dimethylation to MLL leukemia. Cancer Disco. 2016;6:770–83.

    Article  CAS  Google Scholar 

  56. Miao F, Natarajan R. Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol. 2005;25:4650–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Segal RA, Pomeroy SL, Stiles CD. Axonal growth and fasciculation linked to differential expression of BDNF and NT3 receptors in developing cerebellar granule cells. J Neurosci. 1995;15:4970–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sorenson MR, Jha DK, Ucles SA, Flood DM, Strahl BD, Stevens SW, et al. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae. RNA Biol. 2016;13:412–26.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee Y, Yoon E, Cho S, Schmahling S, Muller J, Song JJ. Structural basis of MRG15-mediated activation of the ASH1L histone methyltransferase by releasing an autoinhibitory loop. Structure. 2019;27:846–52 e843.

    Article  CAS  PubMed  Google Scholar 

  60. Iwamori N, Tominaga K, Sato T, Riehle K, Iwamori T, Ohkawa Y, et al. MRG15 is required for pre-mRNA splicing and spermatogenesis. Proc Natl Acad Sci USA. 2016;113:E5408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fryer RH, Kaplan DR, Feinstein SC, Radeke MJ, Grayson DR, Kromer LF. Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain. J Comp Neurol. 1996;374:21–40.

    Article  CAS  PubMed  Google Scholar 

  62. Luberg K, Wong J, Weickert CS, Timmusk T. Human TrkB gene: novel alternative transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during postnatal development. J Neurochem. 2010;113:952–64.

    Article  CAS  PubMed  Google Scholar 

  63. Wong J, Garner B. Evidence that truncated TrkB isoform, TrkB-Shc can regulate phosphorylated TrkB protein levels. Biochem Biophys Res Commun. 2012;420:331–5.

    Article  CAS  PubMed  Google Scholar 

  64. Carim-Todd L, Bath KG, Fulgenzi G, Yanpallewar S, Jing D, Barrick CA, et al. Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo. J Neurosci. 2009;29:678–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deogracias R, Espliguero G, Iglesias T, Rodriguez-Pena A. Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci. 2004;26:470–80.

    Article  CAS  PubMed  Google Scholar 

  66. Finkbeiner S. Calcium regulation of the brain-derived neurotrophic factor gene. Cell Mol Life Sci. 2000;57:394–401.

    Article  CAS  PubMed  Google Scholar 

  67. Leal G, Comprido D, Duarte CB. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology. 2014;76:639–56.

    Article  CAS  PubMed  Google Scholar 

  68. Elliott RC, Black IB, Dreyfus CF. Differential regulation of p75 and trkB mRNA expression after depolarizing stimuli or BDNF treatment in basal forebrain neuron cultures. J Neurosci Res. 2001;66:83–8.

    Article  CAS  PubMed  Google Scholar 

  69. Esvald EE, Tuvikene J, Sirp A, Patil S, Bramham CR, Timmusk T. CREB family transcription factors are major mediators of BDNF transcriptional autoregulation in cortical neurons. J Neurosci. 2020;40:1405–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Watson FL, Heerssen HM, Moheban DB, Lin MZ, Sauvageot CM, Bhattacharyya A, et al. Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex. J Neurosci. 1999;19:7889–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pollscheit J, Glaubitz N, Haller H, Horstkorte R, Bork K. Phosphorylation of serine 774 of the neural cell adhesion molecule is necessary for cyclic adenosine monophosphate response element binding protein activation and neurite outgrowth. J Neurosci Res. 2012;90:1577–82.

    Article  CAS  PubMed  Google Scholar 

  72. Spencer TK, Mellado W, Filbin MT. BDNF activates CaMKIV and PKA in parallel to block MAG-mediated inhibition of neurite outgrowth. Mol Cell Neurosci. 2008;38:110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang H, Xu J, Lazarovici P, Quirion R, Zheng W. cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front Mol Neurosci. 2018;11:255.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C. A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol. 1998;18:967–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lalli MA, Avey D, Dougherty JD, Milbrandt J, Mitra RD. High-throughput single-cell functional elucidation of neurodevelopmental disease-associated genes reveals convergent mechanisms altering neuronal differentiation. Genome Res. 2020;30:1317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bakos J, Bacova Z, Grant SG, Castejon AM, Ostatnikova D. Are molecules involved in neuritogenesis and axon guidance related to autism pathogenesis? Neuromolecular Med. 2015;17:297–304.

    Article  CAS  PubMed  Google Scholar 

  77. Sampathkumar C, Wu YJ, Vadhvani M, Trimbuch T, Eickholt B, Rosenmund C. Loss of MeCP2 disrupts cell autonomous and autocrine BDNF signaling in mouse glutamatergic neurons. Elife. 2016;5:1–23.

  78. Cao C, Rioult-Pedotti MS, Migani P, Yu CJ, Tiwari R, Parang K, et al. Impairment of TrkB-PSD-95 signaling in Angelman syndrome. PLoS Biol. 2013;11:e1001478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Qin L, Williams JB, Tan T, Liu T, Cao Q, Ma K, et al. Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures. Nat Commun. 2021;12:6589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cederquist GY, Tchieu J, Callahan SJ, Ramnarine K, Ryan S, Zhang C, et al. A multiplex human pluripotent stem cell platform defines molecular and functional subclasses of autism-related genes. Cell Stem Cell. 2020;27:35–49 e36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Holt LM, Hernandez RD, Pacheco NL, Torres Ceja B, Hossain M, Olsen ML. Astrocyte morphogenesis is dependent on BDNF signaling via astrocytic TrkB.T1. Elife. 2019;8:1–27.

  82. Zagrebelsky M, Godecke N, Remus A, Korte M. Cell type-specific effects of BDNF in modulating dendritic architecture of hippocampal neurons. Brain Struct Funct. 2018;223:3689–709.

    Article  CAS  PubMed  Google Scholar 

  83. Xia M, Liu J, Wu X, Liu S, Li G, Han C, et al. Histone methyltransferase Ash1l suppresses interleukin-6 production and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. Immunity. 2013;39:470–81.

    Article  CAS  PubMed  Google Scholar 

  84. Cloetta D, Thomanetz V, Baranek C, Lustenberger RM, Lin S, Oliveri F, et al. Inactivation of mTORC1 in the developing brain causes microcephaly and affects gliogenesis. J Neurosci. 2013;33:7799–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Manzini MC, Walsh CA. What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr Opin Genet Dev. 2011;21:333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li L, Ruan X, Wen C, Chen P, Liu W, Zhu L, et al. The COMPASS family protein ASH2L mediates corticogenesis via transcriptional regulation of Wnt signaling. Cell Rep. 2019;28:698–711 e695.

    Article  CAS  PubMed  Google Scholar 

  87. Parrish JZ, Emoto K, Jan LY, Jan YN. Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites. Genes Dev. 2007;21:956–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jeff Twiss for critically reading the manuscript, Amar Kar for insightful discussions on this work, and members of the Twiss laboratory for advice and training on ddPCR. iPSC line 20b was a kind gift of Dr. Kevin Eggan (Harvard Medical School). SBL was supported in part by the Center of Biomedical Excellence Dietary Supplements and Inflammation-NIGMS P20GM103641, SC INBRE NIGMS P20GM103499, and the SC EPSCoR/IDeA Program under award number 18-SR04. The views, perspective, and content do not necessarily represent the official views of the SC EPSCoR/IDeA Program. JSL is supported by 1R01NS104428-01A1. Diagram illustrations were made using BioRender.com

Author information

Authors and Affiliations

Authors

Contributions

SBL conceived, designed, and supervised the study and conducted experiments. SHC and AMC conducted the majority of the experiments. SHC, AMC, and SBL conducted the majority of the analysis. AMB and FDR conducted imaging and gene expression experiments and contributed to the analysis of those experiments. JMV and TAM contributed to gene expression experiments and analysis. MM, MHC, and AJS contributed to imaging analysis. CMP and JSL conducted the imaging on the Delta vision OMX microscope. EC and PSG provided neurons used for some of the experiments. SBL wrote the manuscript and put together all the final figures and tables. All co-authors contributed to editing the manuscript and interpretation of the results.

Corresponding author

Correspondence to Sofia B. Lizarraga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheon, S., Culver, A.M., Bagnell, A.M. et al. Counteracting epigenetic mechanisms regulate the structural development of neuronal circuitry in human neurons. Mol Psychiatry 27, 2291–2303 (2022). https://doi.org/10.1038/s41380-022-01474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01474-1

Search

Quick links