Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered gene expression and PTSD symptom dimensions in World Trade Center responders

Abstract

Despite experiencing a significant trauma, only a subset of World Trade Center (WTC) rescue and recovery workers developed posttraumatic stress disorder (PTSD). Identification of biomarkers is critical to the development of targeted interventions for treating disaster responders and potentially preventing the development of PTSD in this population. Analysis of gene expression from these individuals can help in identifying biomarkers of PTSD. We established a well-phenotyped sample of 371 WTC responders, recruited from a longitudinal WTC responder cohort using stratified random sampling, by obtaining blood, self-reported and clinical interview data. Using bulk RNA-sequencing from whole blood, we examined the association between gene expression and WTC-related PTSD symptom severity on (i) highest lifetime Clinician-Administered PTSD Scale (CAPS) score, (ii) past-month CAPS score, and (iii) PTSD symptom dimensions using a 5-factor model of re-experiencing, avoidance, emotional numbing, dysphoric arousal and anxious arousal symptoms. We corrected for sex, age, genotype-derived principal components and surrogate variables. Finally, we performed a meta-analysis with existing PTSD studies (total Nā€‰=ā€‰1016), using case/control status as the predictor and correcting for these variables. We identified 66 genes significantly associated with total highest lifetime CAPS score (FDR-corrected pā€‰<ā€‰0.05), and 31 genes associated with total past-month CAPS score. Our more granular analyses of PTSD symptom dimensions identified additional genes that did not reach statistical significance in our analyses with total CAPS scores. In particular, we identified 82 genes significantly associated with lifetime anxious arousal symptoms. Several genes significantly associated with multiple PTSD symptom dimensions and total lifetime CAPS score (SERPINA1, RPS6KA1, and STAT3) have been previously associated with PTSD. Geneset enrichment of these findings has identified pathways significant in metabolism, immune signaling, other psychiatric disorders, neurological signaling, and cellular structure. Our meta-analysis revealed 10 genes that reached genome-wide significance, all of which were downregulated in cases compared to controls (CIRBP, TMSB10, FCGRT, CLIC1, RPS6KB2, HNRNPUL1, ALDOA, NACA, ZNF429 and COPE). Additionally, cellular deconvolution highlighted an enrichment in CD4 T cells and eosinophils in responders with PTSD compared to controls. The distinction in significant genes between total lifetime CAPS score and the anxious arousal symptom dimension of PTSD highlights a potential biological difference in the mechanism underlying the heterogeneity of the PTSD phenotype. Future studies should be clear about methods used to analyze PTSD status, as phenotypes based on PTSD symptom dimensions may yield different gene sets than combined CAPS score analysis. Potential biomarkers implicated from our meta-analysis may help improve therapeutic target development for PTSD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of lifetime and past-month severity scores for Clinician-Administered PTSD Scale (CAPS) and PTSD-symptom dimensions.
Fig. 2: Differential gene expression analysis ofĀ lifetime Clinician-Administered PTSD Scale (CAPS), CAPS past-month, anxious arousal lifetime and anxious arousal past-month in Nā€‰=ā€‰355 World Trade Center first-responders.
Fig. 3: Dust cloud severity and disease comorbidity of Clinician-Administered PTSD Scale (CAPS)Ā lifetime and past-month genome-wide correlations.
Fig. 4: Heatmap of differentially expressed (pā€‰<ā€‰0.05) genes from a gene expression analysis across past-month Clinician-Administered PTSD Scale (CAPS) and symptom dimensions and lifetime CAPS and symptom dimensions in Nā€‰=ā€‰355 World Trade Center first-responders.
Fig. 5: KEGG pathway enrichment of differentially expressed genes in Nā€‰=ā€‰355 World Trade Center first-responders in past-month and lifetime Clinician-Administered PTSD Scale (CAPS).
Fig. 6: Forestplots and volcano plot of genome-wide significant genes from our meta-analysis.
Fig. 7: Cellular deconvolution of immune cells in peripheral blood;Ā significant cell type differences for Clinician-Administered PTSD Scale (CAPS) lifetime and past-month compared to controls are noted.

Similar content being viewed by others

Code availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured clinical interview for DSM-IV axis I disorders, clinician version (SCID-CV). New York: Biometrics Research, New York State Psychiatric Institute; 2002.

  2. Yehuda R, Cai G, Golier JA, Sarapas C, Galea S, Ising M, et al. Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks. Biol Psychiatry. 2009;66:708ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Kuan P-F, Waszczuk MA, Kotov R, Clouston S, Yang X, Singh PK, et al. Gene expression associated with PTSD in World Trade Center responders: an RNA sequencing study. Transl Psychiatry. 2017;7:1297.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Clouston S, Pietrzak RH, Kotov R, Richards M, Spiro A, Scott S, et al. Traumatic exposures, posttraumatic stress disorder, and cognitive functioning in World Trade Center responders. Alzheimers Dement N. Y N. 2017;3:593ā€“602.

    ArticleĀ  Google ScholarĀ 

  5. Gong Y, Wang L, Yu H, Alpert N, Cohen MD, Prophete C, et al. Prostate cancer in World Trade Center responders demonstrates evidence of an inflammatory cascade. Mol Cancer Res. 2019;17:1605ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Kuan P-F, Yang X, Clouston S, Ren X, Kotov R, Waszczuk M, et al. Cell type-specific gene expression patterns associated with posttraumatic stress disorder in World Trade Center responders. Transl Psychiatry. 2019;9:1ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Kuan P-F, Mi Z, Georgopoulos P, Hashim D, Luft B, Boffetta P. Enhanced exposure assessment and genome-wide DNA methylation in World Trade Center disaster responders. Eur J Cancer Prev. 2019;28:225ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Sarapas C, Cai G, Bierer LM, Golier JA, Galea S, Ising M, et al. Genetic markers for PTSD risk and resilience among survivors of the World Trade Center attacks. Dis Markers. 2011;30:101ā€“10.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Huckins LM, Chatzinakos C, Breen MS, Hartmann J, Klengel T, Almeida AC, et al. Analysis of genetically regulated gene expression identifies a trauma type specific PTSD gene, SNRNP35, Specific to Military Cohorts. Cell Rep. 2020;31:107716.

  10. Breen MS, Tylee DS, Maihofer AX, Neylan TC, Mehta D, Binder EB, et al. PTSD blood transcriptome mega-analysis: shared inflammatory pathways across biological sex and modes of trauma. Neuropsychopharmacology 2018;43:469ā€“81.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  11. Pietrzak RH, Tsai J, Harpaz-Rotem I, Whealin JM, Southwick SM. Support for a novel five-factor model of posttraumatic stress symptoms in three independent samples of Iraq/Afghanistan veterans: a confirmatory factor analytic study. J Psychiatr Res. 2012;46:317ā€“22.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  12. Mar JC. The rise of the distributions: why non-normality is important for understanding the transcriptome and beyond. Biophys Rev. 2019;11:89ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. de TorrentƩ L, Zimmerman S, Suzuki M, Christopeit M, Greally JM, Mar JC. The shape of gene expression distributions matter: how incorporating distribution shape improves the interpretation of cancer transcriptomic data. BMC Bioinforma. 2020;21:562.

    ArticleĀ  Google ScholarĀ 

  14. Blake DD, Weathers FW, Nagy LM, Kaloupek DG, Gusman FD, Charney DS, et al. The development of a clinician-administered PTSD scale. J Trauma Stress. 1995;8:75ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Fanous AH, Kendler KS. Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: searching for a framework. Mol Psychiatry. 2005;10:6ā€“13.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Schijven D, Geuze E, Vinkers CH, Pulit SL, SchĆ¼r RR, Malgaz M, et al. Multivariate genome-wide analysis of stress-related quantitative phenotypes. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2019;29:1354ā€“64.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Lee SH, Wray NR. Novel genetic analysis for case-control genome-wide association studies: quantification of power and genomic prediction accuracy. PLoS ONE. 2013;8:e71494.

  18. Horn SR, Pietrzak RH, Schechter C, Bromet EJ, Katz CL, Reissman DB, et al. Latent typologies of posttraumatic stress disorder in World Trade Center responders. J Psychiatr Res. 2016;83:151ā€“159.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  19. Pietrzak RH, Feder A, Schechter CB, Singh R, Cancelmo L, Bromet EJ, et al. Dimensional structure and course of post-traumatic stress symptomatology in World Trade Center responders. Psychol Med. 2014;44:2085ā€“98.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Dasaro CR, Holden WL, Berman KD, Crane MA, Kaplan JR, Lucchini RG, et al. Cohort profile: World Trade Center health program general responder cohort. Int J Epidemiol. 2017;46:e9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  21. Ruggiero KJ, Del Ben K, Scotti JR, Rabalais AE. Psychometric properties of the PTSD Checklist-Civilian Version. J Trauma Stress. 2003;16:495ā€“502.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  22. Huckins LM, Johnson JS, Cancelmo L, Diab O, Schaffer J, Cahn L, et al. Polygenic regulation of PTSD severity and outcomes among World Trade Center responders. MedRxiv. 2020. https://www.medrxiv.org/content/10.1101/2020.12.06.20244772v1.

  23. Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abus Negl. 2003;27:169ā€“90.

    ArticleĀ  Google ScholarĀ 

  24. Kubany ES, Haynes SN, Leisen MB, Owens JA, Kaplan AS, Watson SB, et al. Development and preliminary validation of a brief broad-spectrum measure of trauma exposure: the Traumatic Life Events Questionnaire. Psychol Assess. 2000;12:210ā€“24.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Robins L, Cottler L, Bucholz K, Compton W, North C, Rourke K. The Diagnostic Interview Schedule for DSM-IV (DIS-IV) St. Louis, MO: Washington University; 1999.

  26. Pietrzak RH, Goldstein RB, Southwick SM, Grant BF. Medical comorbidity of full and partial posttraumatic stress disorder in US adults: results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. Psychosom Med. 2011;73:697ā€“707.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Hardik Shah Y.-C.W., Rafael Castellanos, Chetanya Pandya, Zachary Giles, RAPiD: An Agile and Dependable RNA-Seq Framework. The 65th Annual Meeting of The American Society of Human Genetics, 2015.

  28. Hoffman GE, Schadt EE. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinforma. 2016;17:483.

    ArticleĀ  Google ScholarĀ 

  29. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882ā€“883.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Mellon SH, Gautam A, Hammamieh R, Jett M, Wolkowitz OM. Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biol Psychiatry. 2018;83:866ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Luft BJ, Schechter C, Kotov R, Broihier J, Reissman D, Guerrera K, et al. Exposure, probable PTSD and lower respiratory illness among World Trade Center rescue, recovery and clean-up workers. Psychol Med. 2012;42:1069ā€“79.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Brackbill RM, Hadler JL, DiGrande L, Ekenga CC, Farfel MR, Friedman S, et al. Asthma and posttraumatic stress symptoms 5 to 6 years following exposure to the World Trade Center terrorist attack. JAMA. 2009;302:502ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Jordan HT, Miller-Archie SA, Cone JE, Morabia A, Stellman SD. Heart disease among adults exposed to the September 11, 2001 World Trade Center disaster: results from the World Trade Center Health Registry. Prev Med. 2011;53:370ā€“376.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  35. Feder A, Mota N, Salim R, Rodriguez J, Singh R, Schaffer J, et al. Risk, coping and PTSD symptom trajectories in World Trade Center responders. J Psychiatr Res. 2016;82:68ā€“79.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  36. Brackbill RM, Cone JE, Farfel MR, Stellman SD. Chronic physical health consequences of being injured during the terrorist attacks on World Trade Center on September 11, 2001. Am J Epidemiol. 2014;179:1076ā€“85.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Wisnivesky JP, Teitelbaum SL, Todd AC, Boffetta P, Crane M, Crowley L, et al. Persistence of multiple illnesses in World Trade Center rescue and recovery workers: a cohort study. Lancet Lond Engl. 2011;378:888ā€“97.

    ArticleĀ  Google ScholarĀ 

  38. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289ā€“300.

    Google ScholarĀ 

  39. Bild A, Febbo PG. Application of a priori established gene sets to discover biologically important differential expression in microarray data. Proc Natl Acad Sci. 2005;102:15278ā€“15279.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Korotkevich G, Sukhov V, Sergushichev A. Fast gene set enrichment analysis. BioRxiv. 2019. https://www.biorxiv.org/content/10.1101/060012v3.

  41. How to do GSEA in R with (fgsea or gage) and plot results. Bioinforma Breakdown. 2019. https://bioinformaticsbreakdown.com/how-to-gsea/. Accessed 20 December 2019.

  42. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457ā€“D462.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J Integr Biol. 2012;16:284ā€“287.

    ArticleĀ  CASĀ  Google ScholarĀ 

  44. Mehta D, Klengel T, Conneely KN, Smith AK, Altmann A, Pace TW, et al. Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc Natl Acad Sci. 2013;110:8302ā€“8307.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Neylan TC, Sun B, Rempel H, Ross J, Lenoci M, Oā€™Donovan A, et al. Suppressed monocyte gene expression profile in men versus women with PTSD. Brain Behav Immun. 2011;25:524ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Segman RH, Shefi N, Goltser-Dubner T, Friedman N, Kaminski N, Shalev AY. Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol Psychiatry. 2005;10:500ā€“13.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Tylee DS, Chandler SD, Nievergelt CM, Liu X, Pazol J, Woelk CH, et al. Blood-based gene-expression biomarkers of post-traumatic stress disorder among deployed marines: a pilot study. Psychoneuroendocrinology 2015;51:472ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Breen MS, Maihofer AX, Glatt SJ, Tylee DS, Chandler SD, Tsuang MT, et al. Gene networks specific for innate immunity define post-traumatic stress disorder. Mol Psychiatry. 2015;20:1538ā€“45.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010;26:2190ā€“2191.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453ā€“457.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM, Amstadter AB, Ashley-Koch AE, et al. Largest GWAS of PTSD (N=20ā€‰070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol Psychiatry. 2018;23:666ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Garrett ME, Qin XJ, Mehta D, Dennis MF, Marx CE, Grant GA, et al. Gene expression analysis in three posttraumatic stress disorder cohorts implicates inflammation and innate immunity pathways and uncovers shared genetic risk with major depressive disorder. Front Neurosci. 2021;15:938.

    ArticleĀ  Google ScholarĀ 

  53. Daskalakis NP, Rijal CM, King C, Huckins LM, Ressler KJ. Recent genetics and epigenetics approaches to PTSD. Curr Psychiatry Rep. 2018;20:30.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  54. Neigh GN, Ali FF. Co-morbidity of PTSD and immune system dysfunction: opportunities for treatment. Curr Opin Pharm. 2016;29:104ā€“10.

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Wang Z, Caughron B, Young MRI. Posttraumatic stress disorder: an immunological disorder? Front Psychiatry. 2017;8:222.

  56. Speer KE, Semple S, Naumovski N, Dā€™Cunha NM, McKune AJ. HPA axis function and diurnal cortisol in post-traumatic stress disorder: a systematic review. Neurobiol Stress. 2019;11:100180.

  57. Yehuda R, Hoge CW, McFarlane AC, Vermetten E, Lanius RA, Nievergelt CM, et al. Post-traumatic stress disorder. Nat Rev Dis Prim. 2015;1:1ā€“22.

    Google ScholarĀ 

  58. Nutt DJ, Malizia AL. Structural and functional brain changes in posttraumatic stress disorder. J Clin Psychiatry. 2004;65:11ā€“17.

    PubMedĀ  Google ScholarĀ 

  59. Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet. 2017;49:1576ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Jong S, de, Newhouse SJ, Patel H, Lee S, Dempster D, Curtis C, et al. Immune signatures and disorder-specific patterns in a cross-disorder gene expression analysis. Br J Psychiatry. 2016;209:202ā€“208.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  61. Tsolakidou A, Czibere L, PĆ¼tz B, TrĆ¼mbach D, Panhuysen M, Deussing JM, et al. Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including Amyloid beta Precursor Protein. BMC Genomics. 2010;11:546.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  62. Maccarrone G, Ditzen C, Yassouridis A, Rewerts C, Uhr M, Uhlen M, et al. Psychiatric patient stratification using biosignatures based on cerebrospinal fluid protein expression clusters. J Psychiatr Res. 2013;47:1572ā€“80.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  63. Hou Y, Liang W, Zhang J, Li Q, Ou H, Wang Z, et al. Schizophrenia-associated rs4702 G allele-specific downregulation of FURIN expression by miR-338-3p reduces BDNF production. Schizophr Res. 2018;199:176ā€“80.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  64. Schrode N, Ho S-M, Yamamuro K, Dobbyn A, Huckins L, Matos MR, et al. Synergistic effects of common schizophrenia risk variants. Nat Genet. 2019;51:1475ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. English JA, Fan Y, Fƶcking M, Lopez LM, Hryniewiecka M, Wynne K, et al. Reduced protein synthesis in schizophrenia patient-derived olfactory cells. Transl Psychiatry. 2015;5:e663ā€“e663.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Miron J, Picard C, LabontĆ© A, Auld D, Breitner J, Poirier J. Association of PPP2R1A with Alzheimerā€™s disease and specific cognitive domains. Neurobiol Aging. 2019;81:234ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Bralten J, Franke B, Waldman I, Rommelse N, Hartman C, Asherson P, et al. Candidate genetic pathways for Attention-Deficit/Hyperactivity Disorder (ADHD) show association to hyperactive/impulsive symptoms in children With ADHD. J Am Acad Child Adolesc Psychiatry. 2013;52:1204ā€“1212.e1.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  68. Chang W-S, Wang Y-H, Zhu X-T, Wu C-J. Genome-wide profiling of miRNA and mRNA expression in Alzheimerā€™s disease. Med Sci Monit Int Med J Exp Clin Res. 2017;23:2721ā€“31.

    CASĀ  Google ScholarĀ 

  69. Kawai T, Morita K, Masuda K, Nishida K, Shikishima M, Ohta M, et al. Gene expression signature in peripheral blood cells from medical students exposed to chronic psychological stress. Biol Psychol. 2007;76:147ā€“55.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  70. Zhao Y, Liang X, Zhu F, Wen Y, Xu J, Yang J, et al. A large-scale integrative analysis of GWAS and common meQTLs across whole life course identifies genes, pathways and tissue/cell types for three major psychiatric disorders. Neurosci Biobehav Rev. 2018;95:347ā€“52.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Konno T, Ross OA, Teive HAG, Sławek J, Dickson DW, Wszolek ZK. DCTN1-related neurodegeneration: Perry syndrome and beyond. Parkinsonism Relat Disord. 2017;41:14ā€“24.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Seth A, Giunta S, Franceschil C, Kola I, Venanzoni MC. Regulation of the human stress response gene GADD153 expression: role of ETS1 and FLI-1 gene products. Cell Death Differ. 1999;6:902ā€“907.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. St-Louis Ɖ, Degrandmaison J, Grastilleur S, GĆ©nier S, Blais V, Lavoie C, et al. Involvement of the coatomer protein complex I in the intracellular traffic of the delta opioid receptor. Mol Cell Neurosci. 2017;79:53ā€“63.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Bettayeb K, Hooli BV, Parrado AR, Randolph L, Varotsis D, Aryal S, et al. Relevance of the COPI complex for Alzheimerā€™s disease progression in vivo. Proc Natl Acad Sci USA. 2016;113:5418ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  75. Yang Y, Wang X, Ju W, Sun L, Zhang H. Genetic and expression analysis of COPI genes and Alzheimerā€™s disease susceptibility. Front Genet. 2019;10:866.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Deng S, Liu J, Wu X, Lu W. Golgi apparatus: a potential therapeutic target for autophagy-associated neurological diseases. Front Cell Dev Biol. 2020;8:901.

    ArticleĀ  Google ScholarĀ 

  77. Izumi K, Brett M, Nishi E, Drunat S, Tan E-S, Fujiki K, et al. ARCN1 mutations cause a recognizable craniofacial syndrome due to COPI-mediated transport defects. Am J Hum Genet. 2016;99:451ā€“459.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  78. Watkin LB, Jessen B, Wiszniewski W, Vece TJ, Jan M, Sha Y, et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat Genet. 2015;47:654ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  79. Jean F, Stuart A, Tarailo-Graovac M. Dissecting the genetic and etiological causes of primary microcephaly. Front Neurol. 2020;11:570830.

  80. Sherin JE, Nemeroff CB. Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci. 2011;13:263ā€“78.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. Giustino TF, Fitzgerald PJ, Maren S. Revisiting propranolol and PTSD: Memory erasure or extinction enhancement? Neurobiol Learn Mem. 2016;130:26ā€“33.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Lippmann M, Cohen MD, Chen L-C. Health effects of World Trade Center (WTC) Dust: An unprecedented disaster with inadequate risk management. Crit Rev Toxicol. 2015;45:492ā€“530.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  83. Reibman J, Liu M, Cheng Q, Liautaud S, Rogers L, Lau S, et al. Characteristics of a Residential and Working Community With Diverse Exposure to World Trade Center Dust, Gas, and Fumes. J Occup Environ Med Am Coll Occup Environ Med. 2009;51:534ā€“41.

    ArticleĀ  Google ScholarĀ 

  84. HervƩ M, Bergon A, Le Guisquet A-M, Leman S, Consoloni J-L, Fernandez-Nunez N, et al. Translational identification of transcriptional signatures of major depression and antidepressant response. Front Mol Neurosci. 2017;10:248.

  85. Carlini V, Verduci I, Cianci F, Cannavale G, Fenoglio C, Galimberti D, et al. CLIC1 protein accumulates in circulating monocyte membrane during neurodegeneration. Int J Mol Sci. 2020;21:1484.

  86. Tang T, Lang X, Xu C, Wang X, Gong T, Yang Y, et al. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat Commun. 2017;8:202.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  87. Gurunathan G, Yu Z, Coulombe Y, Masson J-Y, Richard S. Arginine methylation of hnRNPUL1 regulates interaction with NBS1 and recruitment to sites of DNA damage. Sci Rep. 2015;5:10475.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Baker K, Qiao S-W, Kuo TT, Aveson VG, Platzer B, Andersen J-T, et al. Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8āˆ’CD11b+ dendritic cells. Proc Natl Acad Sci USA. 2011;108:9927ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  89. Le-Niculescu H, Roseberry K, Levey DF, Rogers J, Kosary K, Prabha S, et al. Towards precision medicine for stress disorders: diagnostic biomarkers and targeted drugs. Mol Psychiatry. 2020;25:918ā€“38.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  90. Zhu X, BĆ¼hrer C, Wellmann S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci. 2016;73:3839ā€“59.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  91. Zhou J-Y, Krovvidi RK, Gao Y, Gao H, Petritis BO, De A, et al. Trauma-associated human neutrophil alterations revealed by comparative proteomics profiling. Proteomics Clin Appl. 2013;7:571ā€“83.

  92. Lu Q, Shen N, Li XM, Chen SL. Genomic view of IFN-Ī± response in pre-autoimmune NZB/W and MRL/lpr mice. Genes Immun. 2007;8:590ā€“603.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  93. Chen Y, Li X, Kobayashi I, Tsao D, Mellman TA. Expression and methylation in posttraumatic stress disorder and resilience; evidence of a role for odorant receptors. Psychiatry Res. 2016;245:36ā€“44.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  94. Breen MS, Bierer LM, Daskalakis NP, Bader HN, Makotkine I, Chattopadhyay M, et al. Differential transcriptional response following glucocorticoid activation in cultured blood immune cells: a novel approach to PTSD biomarker development. Transl Psychiatry. 2019;9:201.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  95. Glover DA, Steele AC, Stuber ML, Fahey JL. Preliminary evidence for lymphocyte distribution differences at rest and after acute psychological stress in PTSD-symptomatic women. Brain Behav Immun. 2005;19:243ā€“51.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  96. Lemieux A, Coe CL, Carnes M. Symptom severity predicts degree of T cell activation in adult women following childhood maltreatment. Brain Behav Immun. 2008;22:994ā€“1003.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  97. Skapenko A, Leipe J, Lipsky PE, Schulze-Koops H. The role of the T cell in autoimmune inflammation. Arthritis Res Ther. 2005;7:S4ā€“S14.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  98. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-Ī±. Mol Psychiatry. 2016;21:642ā€“649.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  99. Dong Y, Li S, Lu Y, Li X, Liao Y, Peng Z, et al. Stress-induced NLRP3 inflammasome activation negatively regulates fear memory in mice. J Neuroinflammation. 2020;17:205.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  100. Fonkoue IT, Marvar PJ, Norrholm S, Li Y, Kankam ML, Jones TN, et al. Symptom severity impacts sympathetic dysregulation and inflammation in post-traumatic stress disorder (PTSD). Brain Behav Immun. 2020;83:260ā€“269.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  101. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology. 2017;42:254ā€“70.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  102. Speer K, Upton D, Semple S, McKune A. Systemic low-grade inflammation in post-traumatic stress disorder: a systematic review. J Inflamm Res. 2018;11:111ā€“21.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AF, RHP, SMS, RY, NPD, KK, LMB, SM, and LMH designed the present study and provided conceptual input. MC, JMM, IGU, and DJH led collection of data during participantsā€™ first health-monitoring visit to the WTC Health Program, which were incorporated into analyses for the present study. AF, RHP, LC, OD, LC, CA, JS, SRH, RY, FD, IM, LMB, CS, JSJ, and JDF conducted the study. SM, LMH, RHP, and PR conducted the data analyses. SM, LMH, AF, and RHP wrote the paper. RY, SMS, CS, CA and DSC provided input on the manuscript draft. This study was funded by CDC/NIOSH U01 OH010986 (MPIs AF and RHP) and CDC/NIOSH U01 OH010407 (MPIs AF, RHP, and SMS).

Corresponding authors

Correspondence to Laura M. Huckins or Adriana Feder.

Ethics declarations

Competing interests

AF and DSC are named co-inventors on a patent application in the US, and several issued patents outside the US, filed by the Icahn School of Medicine at Mount Sinai (ISMMS) related to the use of ketamine for the treatment of PTSD. This intellectual property has not been licensed. DSC is named co-inventor on patents filed by the ISMMS relating to the treatment for treatment-resistant depression, suicidal ideation and other disorders. ISMMS has entered into a licensing agreement with Janssen Pharmaceuticals, Inc. and it has and will receive payments from Janssen under the license agreement related to these patents for the treatment of treatment-resistant depression and suicidal ideation. Consistent with the ISMMS Faculty Handbook (the medical school policy), DSC is entitled to a portion of the payments received by the ISMMS. Since SPRAVATO has received regulatory approval for treatment-resistant depression, ISMMS and thus, through the ISMMS, DSC will be entitled to additional payments, beyond those already received, under the license agreement. DSC is a named co-inventor on several patents filed by ISMMS for a cognitive training intervention to treat depression and related psychiatric disorders. The ISMMS has entered into a licensing agreement with Click Therapeutics, Inc. and has and will receive payments related to the use of this cognitive training intervention for the treatment of psychiatric disorders. In accordance with the ISMMS Faculty Handbook, DSC has received a portion of these payments and is entitled to a portion of any additional payments that the medical school might receive from this license with Click Therapeutics. DSC is a named co-inventor on a patent application filed by the ISMMS for the use of intranasally administered Neuropeptide Y (NPY) for the treatment of mood and anxiety disorders. This intellectual property has not been licensed. The other authors declare no conflicts of interest.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchese, S., Cancelmo, L., Diab, O. et al. Altered gene expression and PTSD symptom dimensions in World Trade Center responders. Mol Psychiatry 27, 2225ā€“2246 (2022). https://doi.org/10.1038/s41380-022-01457-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01457-2

Search

Quick links