Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PKCδ-positive GABAergic neurons in the central amygdala exhibit tissue-type plasminogen activator: role in the control of anxiety

Abstract

Tissue plasminogen activator (tPA) is a serine protease expressed in several brain regions and reported to be involved in the control of emotional and cognitive functions. Nevertheless, little is known about the structure-function relationships of these tPA-dependent behaviors. Here, by using a new model of constitutive tPA-deficient mice (tPAnull), we first show that tPA controls locomotor activity, spatial cognition and anxiety. To investigate the brain structures involved in these tPA-dependent behavioral phenotypes, we next generated tPAflox mice allowing conditional tPA deletion (cKO) following stereotaxic injections of adeno-associated virus driving Cre-recombinase expression (AAV-Cre-GFP). We demonstrate that tPA removal in the dentate gyrus of the hippocampus induces hyperactivity and partial spatial memory deficits. Moreover, the deletion of tPA in the central nucleus of the amygdala, but not in the basolateral nucleus, induces hyperactivity and reduced anxiety-like level. Importantly, we prove that these behaviors depend on the tPA present in the adult brain and not on neurodevelopmental disorders. Also, interestingly, our data show that tPA from Protein kinase-C delta-positive (PKCδ) GABAergic interneurons of the lateral/ capsular part of adult mouse central amygdala controls emotional functions through neuronal activation of the medial central amygdala. Together, our study brings new data about the critical central role of tPA in behavioral modulations in adult mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Constitutive tPA-deficient mice (tPAnull) display locomotor, emotional and cognitive deficits.
Fig. 2: Conditional deletion of tPA in the hippocampus (cKO-DG) leads to locomotor hyperactivity and moderate spatial cognitive deficits.
Fig. 3: Conditional deletion of tPA in the central amygdala (cKO-CeA) leads to locomotor hyperactivity and reduced anxiety.
Fig. 4: Conditional deletion of tPA in the basolateral amygdala (cKO-BLA) does not affect locomotor, emotional or cognitive performance.
Fig. 5: tPA expressed in CeL/C PKCδ interneurons influences neuronal activation of the CeM.

Similar content being viewed by others

References

  1. Beaudreau SA, O’Hara R. Late-life anxiety and cognitive impairment: a review. Am J Geriatr Psychiatry. 2008;16:790–803.

    Article  PubMed  Google Scholar 

  2. Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood. 1991;78:3114–24.

    Article  CAS  PubMed  Google Scholar 

  3. Akassoglou K, Kombrinck KW, Degen JL, Strickland S. Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. J Cell Biol. 2000;149:1157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pawlak R, Magarinos AM, Melchor J, McEwen B, Strickland S. Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nat Neurosci. 2003;6:168–74.

    Article  CAS  PubMed  Google Scholar 

  5. Louessard M, Lacroix A, Martineau M, Mondielli G, Montagne A, Lesept F, et al. Tissue plasminogen activator expression is restricted to subsets of excitatory pyramidal glutamatergic neurons. Mol Neurobiol. 2016;53:5000–12.

    Article  CAS  PubMed  Google Scholar 

  6. Teesalu T, Kulla A, Asser T, Koskiniemi M, Vaheri A. Tissue plasminogen activator as a key effector in neurobiology and neuropathology. Biochem Soc Trans. 2002;30:183–9.

    Article  CAS  PubMed  Google Scholar 

  7. Stevenson TK, Lawrence DA. Characterization of tissue plasminogen activator expression and trafficking in the adult murine brain. ENeuro. 2018;5:1–18.

    Article  Google Scholar 

  8. Hébert M, Anfray A, Chevilley A, Martinez de Lizarrondo S, Quenault A, Louessard M, et al. Distant space processing is controlled by tPA-dependent NMDA receptor signaling in the entorhinal cortex. Cereb Cortex. 2017;27:4783–96.

    PubMed  Google Scholar 

  9. Huang YY, Bach ME, Lipp HP, Zhuo M, Wolfer DP, Hawkins RD, et al. Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci USA. 1996;93:8699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calabresi P, Napolitano M, Centonze D, Marfia GA, Gubellini P, Teule MA, et al. Tissue plasminogen activator controls multiple forms of synaptic plasticity and memory. Eur J Neurosci. 2000;12:1002–12.

    Article  CAS  PubMed  Google Scholar 

  11. Pang PT, Lu B. Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF. Ageing Res Rev. 2004;3:407–30.

    Article  CAS  PubMed  Google Scholar 

  12. Parcq J, Bertrand T, Montagne A, Baron AF, MacRez R, Billard JM, et al. Unveiling an exceptional zymogen: the single-chain form of tPA is a selective activator of NMDA receptor-dependent signaling and neurotoxicity. Cell Death Differ. 2012;19:1983–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Madani R, Hulo S, Toni N, Madani H, Steimer T, Muller D, et al. Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 1999;18:3007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pawlak R, Nagai N, Urano T, Napiorkowska-Pawlak D, Ihara H, Takada Y, et al. Rapid, specific and active site-catalyzed effect of tissue-plasminogen activator on hippocampus-dependent learning in mice. Neuroscience. 2002;113:995–1001.

    Article  CAS  PubMed  Google Scholar 

  15. Benchenane K, Castel H, Boulouard M, Bluthé R, Fernandez-Monreal M, Roussel BD, et al. Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory. J Cell Sci. 2007;120:578–85.

    Article  CAS  PubMed  Google Scholar 

  16. Obiang P, Macrez R, Jullienne A, Bertrand T, Lesept F, Ali C, et al. GluN2D subunit-containing NMDA receptors control tissue plasminogen activator-mediated spatial memory. J Neurosci. 2012;32:12726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Obiang P, Maubert E, Bardou I, Nicole O, Launay S, Bezin L, et al. Enriched housing reverses age-associated impairment of cognitive functions and tPA-dependent maturation of BDNF. Neurobiol Learn Mem. 2011;96:121–9.

    Article  CAS  PubMed  Google Scholar 

  18. Matys T, Pawlak R, Matys E, Pavlides C, McEwen BS, Strickland S. Tissue plasminogen activator promotes the effects of corticotropin- releasing factor on the amygdala and anxiety-like behavior. Proc Natl Acad Sci USA. 2004;101:16345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Norris EH, Strickland S. Modulation of NR2B-regulated contextual fear in the hippocampus by the tissue plasminogen activator system. Proc Natl Acad Sci USA. 2007;104:13473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Y, Maiya R, Norris EH, Kreek MJ, Strickland S. Involvement of tissue plasminogen activator in stress responsivity during acute cocaine withdrawal in mice. Stress. 2010;13:481–90.

    Article  CAS  PubMed  Google Scholar 

  21. Maiya R, Zhou Y, Norris EH, Kreek MJ, Strickland S. Tissue plasminogen activator modulates the cellular and behavioral response to cocaine. Proc Natl Acad Sci USA. 2009;106:1983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krizo JA, Moreland LE, Rastogi A, Mou X, Prosser RA, Mintz EM. Regulation of Locomotor activity in fed, fasted, and food-restricted mice lacking tissue-type plasminogen activator. BMC Physiol. 2018;18:1–9.

    Article  Google Scholar 

  23. Pothakos K, Robinson JK, Gravanis I, Marsteller DA, Dewey SL, Tsirka SE. Decreased serotonin levels associated with behavioral disinhibition in tissue plasminogen activator deficient (tPA-/-) mice. Brain Res. 2010;1326:135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004;306:487–91.

    Article  CAS  PubMed  Google Scholar 

  25. Zhuo M, Holtzman DM, Li Y, Osaka H, DeMaro J, Jacquin M, et al. Role of tissue plasminogen activator receptor LRP in hippocampal long- term potentiation. J Neurosci. 2000;20:542–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Szabo R, Samson AL, Lawrence DA, Medcalf RL, Bugge TH. Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator-deficient mouse strains. J Thromb Haemost. 2016;14:1618–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pasquet N, Douceau S, Naveau M, Lesept F, Louessard M, Lebouvier L, et al. Tissue-type plasminogen Activator controlled corticogenesis through a mechanism dependent of NMDA receptors expressed on radial glial cells. Cereb Cortex. 2019;29:2482–98.

    Article  PubMed  Google Scholar 

  28. Birling MC, Dierich A, Jacquot S, Hérault Y, Pavlovic G. Highly-efficient, fluorescent, locus directed cre and FlpO deleter mice on a pure C57BL/6N genetic background. Genesis. 2012;50:482–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bailey MT, Kinsey SG, Padgett DA, Sheridan JF, Leblebicioglu B. Social stress enhances IL-1β and TNF-α production by Porphyromonas gingivalis lipopolysaccharide-stimulated CD11b+ cells. Physiol Behav. 2009;98:351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kinsey SG, Bailey MT, Sheridan JF, Padgett DA, Avitsur R. Repeated social defeat causes increased anxiety-like behavior and alters splenocyte function in C57BL/6 and CD-1 mice. Brain Behav Immun. 2007;21:458–66.

    Article  PubMed  Google Scholar 

  31. Poucet B, Herrmann T, Buhot MC. Effects of short-lasting inactivations of the ventral hippocampus and medial septum on long-term and short-term acquisition of spatial information in rats. Behav Brain Res. 1991;44:53–65.

    Article  CAS  PubMed  Google Scholar 

  32. Barnes CA. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979;93:74–104.

    Article  CAS  PubMed  Google Scholar 

  33. van Holstein M, Floresco SB. Dissociable roles for the ventral and dorsal medial prefrontal cortex in cue-guided risk/reward decision making. Neuropsychopharmacology. 2020;45:683–93.

    Article  PubMed  Google Scholar 

  34. Euston DR, Gruber AJ, McNaughton BL. The role of medial prefrontal cortex in memory and decision making. Neuron. 2012;76:1057–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun. 2020;11:1–15.

    CAS  Google Scholar 

  36. Hare BD, Duman RS. Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol Psychiatry. 2020;25:2742–58.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cai H, Haubensak W, Anthony TE, Anderson DJ. Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci. 2014;17:1240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye J, Veinante P. Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse. Brain Struct Funct. 2019;224:1067–95.

    Article  CAS  PubMed  Google Scholar 

  39. Sasaki K, Arimoto K, Kankawa K, Terada C, Yamamori T, Watakabe A, et al. Rho guanine nucleotide exchange factors regulate horizontal axon branching of cortical upper layer neurons. Cereb Cortex. 2020;30:2506–18.

    Article  PubMed  Google Scholar 

  40. Hayashi T, Yoshida T, Ra M, Taguchi R, Mishina M. IL1RAPL1 associated with mental retardation and autism regulates the formation and stabilization of glutamatergic synapses of cortical neurons through RhoA signaling pathway. PLoS ONE. 2013;8:1–12.

    Article  Google Scholar 

  41. Oh SB, Byun CJ, Yun JH, Jo DG, Carmeliet P, Koh JY, et al. Tissue plasminogen activator arrests Alzheimer’s disease pathogenesis. Neurobiol Aging. 2014;35:511–9.

    Article  CAS  PubMed  Google Scholar 

  42. Seeds NW, Basham ME, Haffke SP. Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc Natl Acad Sci USA. 1999;96:14118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee SH, Ko HM, Kwon KJ, Lee J, Han SH, Han DW, et al. TPA regulates neurite outgrowth by phosphorylation of LRP5/6 in neural progenitor cells. Mol Neurobiol. 2014;49:199–215.

    Article  CAS  PubMed  Google Scholar 

  44. Pawlak R, Rao BSS, Melchor JP, Chattarji S, McEwen B, Strickland S. Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus. Proc Natl Acad Sci USA. 2005;102:18201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sallés FJ, Strickland S, Sallé FJ, Strickland S. Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. J Neurosci. 2002;22:2125–34.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hartley T, Lever C, Burgess N, O’keefe J. Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc B Biol Sci. 2014;369:1–11.

    Article  Google Scholar 

  47. Bennur S, Shankaranarayana Rao BS, Pawlak R, Strickland S, McEwen BS, Chattarji S. Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience. 2007;144:8–16.

    Article  CAS  PubMed  Google Scholar 

  48. Gilpin NW, Herman MA, Roberto M. The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biol Psychiatry. 2015;77:859–69.

    Article  PubMed  Google Scholar 

  49. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature. 2011;471:358–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Babaev O, Piletti Chatain C, Krueger-Burg D. Inhibition in the amygdala anxiety circuitry. Exp Mol Med. 2018;50:1–16.

    Article  CAS  PubMed  Google Scholar 

  51. Hunt S, Sun Y, Kucukdereli H, Klein R, Sah P. Intrinsic circuits in the lateral central amygdala. ENeuro. 2017;4:1–18.

    Article  Google Scholar 

  52. Ahrens S, Wu MV, Furlan A, Hwang GR, Paik R, Li H, et al. A central extended amygdala circuit that modulates anxiety. J Neurosci. 2018;38:5567–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCullough KM, Morrison FG, Hartmann J, Carlezon WA, Ressler KJ. Quantified coexpression analysis of central amygdala subpopulations. ENeuro. 2018;5:e0010-18.2018.

    Article  Google Scholar 

  54. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature. 2010;468:270–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B, et al. Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci. 2013;16:332–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Botta P, Demmou L, Kasugai Y, Markovic M, Xu C, Fadok JP, et al. Regulating anxiety with extrasynaptic inhibition. Nat Neurosci. 2015;18:1493–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Griessner J, Pasieka M, Böhm V, Grössl F, Kaczanowska J, Pliota P, et al. Central amygdala circuit dynamics underlying the benzodiazepine anxiolytic effect. Mol Psychiatry. 2021;26:534–44.

    Article  PubMed  Google Scholar 

  58. Lenoir S, Varangot A, Lebouvier L, Galli T, Hommet Y, Vivien D. Post-synaptic release of the neuronal tissue-type plasminogen activator (tPA). Front Cell Neurosci. 2019;13:1–15.

    Article  Google Scholar 

  59. Lochner JE, Honigman LS, Grant WF, Gessford SK, Hansen AB, Silverman MA, et al. Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. J Neurobiol. 2006;66:564–77.

    Article  CAS  PubMed  Google Scholar 

  60. Matys T, Pawlak R, Strickland S. Tissue plasminogen activator in the bed nucleus of stria terminalis regulates acoustic startle. Neuroscience. 2005;135:715–22.

    Article  CAS  PubMed  Google Scholar 

  61. Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET, et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med. 2001;7:59–64.

    Article  CAS  PubMed  Google Scholar 

  62. Roseberry TK, Lalive AL, Margolin BD, Kreitzer AC. Locomotor suppression by a monosynaptic amygdala to brainstem circuit. BioRxiv. 2019. https://doi.org/10.1101/724252.

Download references

Acknowledgements

We are grateful to the molecular biology and viral production facility of MIRCen, François Jacob Institute of Biology, CEA for viral particles production. We thank Pr Gilles Bonvento for the help to setup the experimental guidelines regarding AAV manipulations. This work was supported by grants from the Ministère de l’Enseignement Supérieur et de la Recherche and INSERM (French National Institute for Health and Medical Research) (HCERES U1237-2017/2022).

Author information

Authors and Affiliations

Authors

Contributions

DV and VA designed and supervised the study. SD, EL, and DV performed the data analysis. SD, EL, YH, LL, and EM performed the experiments. AB and CJ designed and produced AAV constructs. SD, VA, and DV wrote the manuscript. All authors have read and have approved the final manuscript.

Corresponding author

Correspondence to Denis Vivien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douceau, S., Lemarchand, E., Hommet, Y. et al. PKCδ-positive GABAergic neurons in the central amygdala exhibit tissue-type plasminogen activator: role in the control of anxiety. Mol Psychiatry 27, 2197–2205 (2022). https://doi.org/10.1038/s41380-022-01455-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01455-4

This article is cited by

Search

Quick links