Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A neural and behavioral trade-off between value and uncertainty underlies exploratory decisions in normative anxiety

Abstract

Exploration reduces uncertainty about the environment and improves the quality of future decisions, but at the cost of provisional uncertain and suboptimal outcomes. Although anxiety promotes intolerance to uncertainty, it remains unclear whether and by which mechanisms anxiety relates to exploratory decision-making. We use a dynamic three-armed-bandit task and find that higher trait-anxiety is associated with increased exploration, which in turn harms overall performance. We identify two distinct behavioral sources: first, decisions made by anxious individuals are guided toward reduction of uncertainty; and second, decisions are less guided by immediate value gains. These findings are similar in both loss and gain domains, and further demonstrate that an affective trait relates to exploration and results in an inverse-U-shaped relationship between anxiety and overall performance. Additional imaging data (fMRI) suggests that normative anxiety correlates negatively with the representation of expected-value in the dorsal-anterior-cingulate-cortex, and in contrast, positively with the representation of uncertainty in the anterior-insula. We conclude that a trade-off between value-gains and uncertainty-reduction entails maladaptive decision-making in individuals with higher normal-range anxiety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Paradigm and individual behavior.
Fig. 2: Behavioral results.
Fig. 3: Modeling behavior.
Fig. 4: Individually fitted model parameters.
Fig. 5: BOLD signal during exploratory decision making.

Similar content being viewed by others

Data availability

The data used for data analyses can be provided following reasonable request.

Code availability

The code used for data analyses can be provided following reasonable request.

References

  1. Cohen JD, McClure SM, Yu AJ. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos Trans R Soc Lond Ser B, Biol Sci. 2007;362:933–42.

    Article  Google Scholar 

  2. Addicott MA, Pearson JM, Sweitzer MM, Barack DL, Platt ML. A Primer on Foraging and the Explore/Exploit Trade-Off for Psychiatry Research. Neuropsychopharmacol : Off Publ Am Coll Neuropsychopharmacol. 2017;42:1931–9.

    Article  CAS  Google Scholar 

  3. Mehlhorn K, Newell BR, Todd PM, Lee MD, Morgan K, Braithwaite VA, et al. Unpacking the exploration-exploitation tradeoff: a synthesis of human and animal literatures. Decision. 2015;2:191–215.

    Article  Google Scholar 

  4. Scholl J, Klein-Flugge M. Understanding psychiatric disorder by capturing ecologically relevant features of learning and decision-making. Behav Brain Res. 2018;355:56–75.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hartley CA, Phelps EA. Anxiety and decision-making. Biol Psychiatry. 2012;72:113–8.

    Article  PubMed  Google Scholar 

  6. Buhr K, Dugas MJ. The role of fear of anxiety and intolerance of uncertainty in worry: an experimental manipulation. Behav Res Ther. 2009;47:215–23.

    Article  PubMed  Google Scholar 

  7. Grupe DW, Nitschke JB. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci. 2013;14:488–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maner JK, Schmidt NB. The role of risk avoidance in anxiety. Behav Ther. 2006;37:181–9.

    Article  PubMed  Google Scholar 

  9. Maner JK, Richey JA, Cromer K, Mallott M, Lejuez CW, Joiner TE, et al. Dispositional anxiety and risk-avoidant decision-making. Pers Indiv Differ. 2007;42:665–75.

    Article  Google Scholar 

  10. Charpentier CJ, Aylward J, Roiser JP, Robinson OJ. Enhanced Risk Aversion, But Not Loss Aversion, in Unmedicated Pathological Anxiety. Biol Psychiatry. 2017;81:1014–22.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Frank MJ, Doll BB, Oas-Terpstra J, Moreno F. Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat Neurosci. 2009;12:1062–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gershman SJ. Deconstructing the human algorithms for exploration. Cognition. 2018;173:34–42.

    Article  PubMed  Google Scholar 

  13. Gershman SJ, Tzovaras BG. Dopaminergic genes are associated with both directed and random exploration. Neuropsychologia. 2018;120:97–104.

    Article  PubMed  Google Scholar 

  14. Wilson RC, Geana A, White JM, Ludvig EA, Cohen JD. Humans Use Directed and Random Exploration to Solve the Explore-Exploit Dilemma. J Exp Psychol Gen. 2014;143:2074–81.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Badre D, Doll BB, Long NM, Frank MJ. Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron. 2012;73:595–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cavanagh JF, Figueroa CM, Cohen MX, Frank MJ. Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation. Cereb Cortex. 2012;22:2575–86.

    Article  PubMed  Google Scholar 

  17. Kayser AS, Mitchell JM, Weinstein D, Frank MJ. Dopamine, locus of control, and the exploration-exploitation tradeoff. Neuropsychopharmacol : Off Publ Am Coll Neuropsychopharmacol. 2015;40:454–62.

    Article  CAS  Google Scholar 

  18. Tomov MS, Truong V, Hundia RA, Gershman SJ. Dissociable neural correlates of uncertainty underlie different exploration strategies. Nat Commun. 2020;11:1–12.

    Article  CAS  Google Scholar 

  19. Daw ND, O'Doherty JP, Dayan P, Seymour B, Dolan RJ. Cortical substrates for exploratory decisions in humans. Nature. 2006;441:876–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laureiro-Martinez D, Brusoni S, Canessa N, Zollo M. Understanding the exploration-exploitation dilemma: an fmri study of attention control and decision-making performance. Strategic Manag J. 2015;36:319–38.

    Article  Google Scholar 

  21. Blanchard TC, Gershman SJ. Pure correlates of exploration and exploitation in the human brain. Cogn Affect Behav Neurosci. 2018;18:117–26.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chakroun K, Mathar D, Wiehler A, Ganzer F, Peters J. Dopaminergic modulation of the exploration/exploitation trade-off in human decision-making. Elife. 2020;9:1–44.

    Article  Google Scholar 

  23. Paulus MP, Stein MB. An insular view of anxiety. Biol Psychiatry. 2006;60:383–7.

    Article  PubMed  Google Scholar 

  24. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007;164:1476–88.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bishop SJ. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci. 2007;11:307–16.

    Article  PubMed  Google Scholar 

  26. Aylward J, Valton V, Ahn WY, Bond RL, Dayan P, Roiser JP, et al. Altered learning under uncertainty in unmedicated mood and anxiety disorders. Nat Hum Behav. 2019;3:1116–23.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Browning M, Behrens TE, Jocham G, O'Reilly JX, Bishop SJ. Anxious individuals have difficulty learning the causal statistics of aversive environments. Nat Neurosci. 2015;18:590. +

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lamba A, Frank MJ, FeldmanHall O. Anxiety Impedes Adaptive Social Learning Under Uncertainty. Psychol Sci. 2020;31:592–603.

    Article  PubMed  Google Scholar 

  29. Bijsterbosch J, Smith S, Bishop SJ. Functional Connectivity under Anticipation of Shock: Correlates of Trait Anxious Affect versus Induced Anxiety. J Cogn Neurosci. 2015;27:1840–53.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu P, Gu R, Broster LS, Wu R, Van Dam NT, Jiang Y, et al. Neural basis of emotional decision making in trait anxiety. J Neurosci. 2013;33:18641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fung BJ, Qi S, Hassabis D, Daw N, Mobbs D. Slow escape decisions are swayed by trait anxiety. Nat Hum Behav. 2019;3:702–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Spielberger CD, Gorsuch RL, Lushene R, Vagg PR, Jacobs GA. Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press; 1983.

    Google Scholar 

  33. De Martino B, Kumaran D, Seymour B, Dolan RJ. Frames, biases, and rational decision-making in the human brain. Science. 2006;313:684–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jepma M, Lopez-Sola M. Anxiety and framing effects on decision making: insights from neuroimaging. J Neurosci. 2014;34:3455–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tzovara A, Murray MM, Bourdaud N, Chavarriaga R, Millan Jdel R, De, et al. The timing of exploratory decision-making revealed by single-trial topographic EEGanalyses. NeuroImage. 2012;60:1959–69.

    Article  PubMed  Google Scholar 

  36. Gershman SJ, Pesaran B, Daw ND. Human reinforcement learning subdivides structured action spaces by learning effector-specific values. J Neurosci. 2009;29:13524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.

  38. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. Bayesian model selection for group studies. NeuroImage. 2009;46:1004–17.

    Article  PubMed  Google Scholar 

  39. Wilson RC, Collins AG. Ten simple rules for the computational modeling of behavioral data. Elife. 2019;8:1–33.

    Article  Google Scholar 

  40. Hayes AF, Rockwood NJ. Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation. Behav Res Ther. 2017;98:39–57.

    Article  PubMed  Google Scholar 

  41. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage. 2003;19:1233–9.

    Article  PubMed  Google Scholar 

  42. Cascio CN, Konrath SH, Falk EB. Narcissists' social pain seen only in the brain. Soc Cogn Affect Neurosci. 2015;10:335–41.

    Article  PubMed  Google Scholar 

  43. Wang F, Peng K, Bai Y, Li R, Zhu Y, Sun P, et al. The Dorsal Anterior Cingulate Cortex Modulates Dialectical Self-Thinking. Front Psychol. 2016;7:152.

    PubMed  PubMed Central  Google Scholar 

  44. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage. 2005;25:1325–35.

    Article  PubMed  Google Scholar 

  45. Bludau S, Eickhoff SB, Mohlberg H, Caspers S, Laird AR, Fox PT, et al. Cytoarchitecture, probability maps and functions of the human frontal pole. NeuroImage. 2014;93:260–75.

    Article  PubMed  Google Scholar 

  46. Levy DJ, Glimcher PW. The root of all value: a neural common currency for choice. Curr Opin Neurobiol. 2012;22:1027–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aberg KC, Doell KC, Schwartz S. The left hemisphere learns what is right: Hemispatial reward learning depends on reinforcement learning processes in the contralateral hemisphere. Neuropsychologia. 2016;89:1–13.

    Article  PubMed  Google Scholar 

  48. Cohen MX. Individual differences and the neural representations of reward expectation and reward prediction error. Soc Cogn Affect Neurosci. 2007;2:20–30.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Baliki MN, Mansour A, Baria AT, Huang L, Berger SE, Fields HL, et al. Parceling human accumbens into putative core and shell dissociates encoding of values for reward and pain. J Neurosci. 2013;33:16383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aberg KC, Kramer EE, Schwartz S. Neurocomputational correlates of learned irrelevance in humans. NeuroImage. 2020;213:116719.

    Article  PubMed  Google Scholar 

  51. Vul E, Harris C, Winkielman P, Pashler H. Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition. Perspect Psychological Sci : J Assoc Psychological Sci. 2009;4:274–90.

    Article  Google Scholar 

  52. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50.

    Article  CAS  PubMed  Google Scholar 

  53. Aberg KC, Muller J, Schwartz S. Trial-by-Trial Modulation of Associative Memory Formation by Reward Prediction Error and Reward Anticipationas Revealed by a Biologically Plausible Computational Model. Front Human Neurosci. 2017;11:1–15.

    Article  Google Scholar 

  54. Burnham KP, Anderson DR. Multimodel inference—understanding AIC and BIC in model selection. Socio Method Res. 2004;33:261–304.

    Article  Google Scholar 

  55. Palminteri S, Wyart V, Koechlin E. The Importance of Falsification in Computational Cognitive Modeling. Trends Cogn Sci. 2017;21:425–33.

    Article  PubMed  Google Scholar 

  56. Domenech P, Koechlin E. Executive control and decision-making in the prefrontal cortex. Curr Opin Behav Sci. 2015;1:101–6.

    Article  Google Scholar 

  57. Rauch SL, Shin LM, Wright CI. Neuroimaging studies of amygdala function in anxiety disorders. Ann N. Y Acad Sci. 2003;985:389–410.

    Article  PubMed  Google Scholar 

  58. Shackman AJ, Fox AS. Contributions of the Central Extended Amygdala to Fear and Anxiety. J Neurosci. 2016;36:8050–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Costa VD, Mitz AR, Averbeck BB. Subcortical Substrates of Explore-Exploit Decisions in Primates. Neuron. 2019;103:533–45. e535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Knox WB, Otto AR, Stone P, Love BC. The nature of belief-directed exploratory choice in human decision-making. Front Psychol. 2011;2:398.

    PubMed  Google Scholar 

  61. Gagne C, Zika O, Dayan P, Bishop SJ. Impaired adaptation of learning to contingency volatility in internalizing psychopathology. Elife. 2020;9:1–51.

    Article  Google Scholar 

  62. Pulcu E, Browning M. The Misestimation of Uncertainty in Affective Disorders. Trends Cogn Sci. 2019;23:865–75.

    Article  PubMed  Google Scholar 

  63. Payzan-LeNestour E, Bossaerts P. Risk, unexpected uncertainty, and estimation uncertainty: Bayesian learning in unstable settings. PLoS Comput Biol. 2011;7:e1001048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Collins AGE, Frank MJ. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. Eur J Neurosci. 2012;35:1024–35.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dar KA, Iqbal N, Mushtaq A. Intolerance of uncertainty, depression, and anxiety: examining the indirect and moderating effects of worry. Asian J Psychiatry. 2017;29:129–33.

    Article  Google Scholar 

  66. Carleton RN. Into the unknown: a review and synthesis of contemporary models involving uncertainty. J Anxiety Disord. 2016;39:30–43.

    Article  PubMed  Google Scholar 

  67. Einstein DA. Extension of the Transdiagnostic Model to Focus on Intolerance of Uncertainty: a Review of the Literature and Implications for Treatment. Clin Psychol : Publ Div Clin Psychol Am Psychological Assoc. 2014;21:280–300.

    Google Scholar 

  68. Pepperdine E, Lomax C, Freeston MH. Disentangling intolerance of uncertainty and threat appraisal in everyday situations. J Anxiety Disord. 2018;57:31–8.

    Article  CAS  PubMed  Google Scholar 

  69. Oglesby ME, Allan NP, Schmidt NB. Randomized control trial investigating the efficacy of a computer-based intolerance of uncertainty intervention. Behav Res Ther. 2017;95:50–7.

    Article  PubMed  Google Scholar 

  70. Kolling N, Behrens TE, Mars RB, Rushworth MF. Neural mechanisms of foraging. Science. 2012;336:95–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shenhav A, Straccia MA, Cohen JD, Botvinick MM. Anterior cingulate engagement in a foraging context reflects choice difficulty, not foraging value. Nat Neurosci. 2014;17:1249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hayden BY, Pearson JM, Platt ML. Neuronal basis of sequential foraging decisions in a patchy environment. Nat Neurosci. 2011;14:933–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Charnov EL. Optimal foraging, the marginal value theorem. Theor Popul Biol. 1976;9:129–36.

    Article  CAS  PubMed  Google Scholar 

  74. Findling C, Skvortsova V, Dromnelle R, Palminteri S, Wyart V. Computational noise in reward-guided learning drives behavioral variability in volatile environments. Nat Neurosci. 2019;22:2066. +

    Article  CAS  PubMed  Google Scholar 

  75. Simmons A, Matthews SC, Paulus MP, Stein MB. Intolerance of uncertainty correlates with insula activation during affective ambiguity. Neurosci Lett. 2008;430:92–97.

    Article  CAS  PubMed  Google Scholar 

  76. Gogolla N. The insular cortex. Curr Biol. 2017;27:R580–R586.

    Article  CAS  PubMed  Google Scholar 

  77. Alvarez RP, Kirlic N, Misaki M, Bodurka J, Rhudy JL, Paulus MP, et al. Increased anterior insula activity in anxious individuals is linked to diminished perceived control. Transl Psychiatry. 2015;5:e591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science. 1999;284:1979–81.

    Article  CAS  PubMed  Google Scholar 

  79. Wright P, He G, Shapira NA, Goodman WK, Liu Y. Disgust and the insula: fMRI responses to pictures of mutilation and contamination. Neuroreport. 2004;15:2347–51.

    Article  CAS  PubMed  Google Scholar 

  80. Dunsmoor JE, Paz R. Fear generalization and anxiety: behavioral and neural mechanisms. Biol Psychiatry. 2015;78:336–43.

    Article  PubMed  Google Scholar 

  81. Lissek S. Toward an Account of Clinical Anxiety Predicated on Basic, Neurally Mapped Mechanisms of Pavlovian Fear-Learning: The Case for Conditioned Overgeneralization. Depression Anxiety. 2012;29:257–63.

    Article  PubMed  Google Scholar 

  82. Laufer O, Paz R. Monetary loss alters perceptual thresholds and compromises future decisions via amygdala and prefrontal networks. J Neurosci. 2012;32:6304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shalev L, Paz R, Avidan G. Visual Aversive Learning Compromises Sensory Discrimination. J Neurosci. 2018;38:2766–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Resnik J, Sobel N, Paz R. Auditory aversive learning increases discrimination thresholds. Nat Neurosci. 2011;14:791–6.

    Article  CAS  PubMed  Google Scholar 

  85. Laufer O, Israeli D, Paz R. Behavioral and Neural Mechanisms of Overgeneralization in Anxiety. Curr Biol. 2016;26:713–22.

    Article  CAS  PubMed  Google Scholar 

  86. Eysenck MW, Derakshan N, Santos R, Calvo MG. Anxiety and cognitive performance: attentional control theory. Emotion. 2007;7:336–53.

    Article  PubMed  Google Scholar 

  87. Bar-Haim Y, Lamy D, Pergamin L, Bakermans-Kranenburg MJ, van IMH. Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychological Bull. 2007;133:1–24.

    Article  Google Scholar 

  88. Schonbrodt FD, Perugini M. At what sample size do correlations stabilize? J Res Pers. 2013;47:609–12.

    Article  Google Scholar 

  89. Open Science C. PSYCHOLOGY. Estimating the reproducibility of psychological science. Science. 2015;349:aac4716.

    Article  CAS  Google Scholar 

  90. Grady CL, Rieck JR, Nichol D, Rodrigue KM, Kennedy KM. Influence of sample size and analytic approach on stability and interpretation of brain-behavior correlations in task-relatedfMRIdata. Hum Brain Mapp. 2021;42:204–19.

    Article  PubMed  Google Scholar 

  91. Coricelli G, Rustichini A. Counterfactual thinking and emotions: regret and envy learning. Philos T R Soc B. 2010;365:241–7.

    Article  Google Scholar 

  92. Bandura A. Self-Efficacy Mechanism in Human Agency. Am Psychol. 1982;37:122–47.

    Article  Google Scholar 

  93. Roese NJ, Epstude K, Fessel F, Morrison M, Smallman R, Summerville A, et al. Repetitive Regret, Depression, and Anxiety: Findings from a Nationally Representative Survey. J Soc Clin Psychol. 2009;28:671–88.

    Article  Google Scholar 

  94. Ehring T, Watkins ER. Repetitive Negative Thinking as a Transdiagnostic Process. Int J Cogn Ther. 2008;1:192–205.

    Article  Google Scholar 

  95. Muris P. Relationships between self-efficacy and symptoms of anxiety disorders and depression in a normal adolescent sample. Pers Indiv Differ. 2002;32:337–48.

    Article  Google Scholar 

  96. Zumberg KM, Chang C, Sanna LJ. Does problem orientation involve more than generalized self-efficacy? Predicting psychological and physical functioning in college students. Pers Indiv Differ. 2008;45:328–32.

    Article  Google Scholar 

  97. Luszczynska A, Gutierrez-Dona B, Schwarzer R. General self-efficacy in various domains of human functioning: Evidence from five countries. Int J Psychol. 2005;40:80–9.

    Article  Google Scholar 

  98. Chambers JA, Power KG, Durham RC. The relationship between trait vulnerability and anxiety and depressive diagnoses at long-term follow-up of Generalized Anxiety Disorder. J Anxiety Disord. 2004;18:587–607.

    Article  PubMed  Google Scholar 

  99. Weger M, Sandi C. High anxiety trait: A vulnerable phenotype for stress-induced depression. Neurosci Biobehav Rev. 2018;87:27–37.

    Article  PubMed  Google Scholar 

  100. Mineka S, Oehlberg K. The relevance of recent developments in classical conditioning to understanding the etiology and maintenance of anxiety disorders. Acta Psychol. 2008;127:567–80.

    Article  Google Scholar 

  101. Paulus MP, Yu AJ. Emotion and decision-making: affect-driven belief systems in anxiety and depression. Trends Cogn Sci. 2012;16:476–83.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lee D. Decision making: from neuroscience to psychiatry. Neuron. 2013;78:233–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rosen JB, Schulkin J. From normal fear to pathological anxiety. Psychological Rev. 1998;105:325–50.

    Article  CAS  Google Scholar 

  104. Grupe DW. Decision-Making in Anxiety and Its Disorders. In: Dreher JC, Tremblay L, (eds). Decision Neuroscience - An Integrative Approach. Academic Press; 2017. p. 327–38.

    Chapter  Google Scholar 

  105. Balsamo M, Romanelli R, Innamorati M, Ciccarese G, Carlucci L, Saggino A. The State-Trait Anxiety Inventory: shadows and Lights on its Construct Validity. J Psychopathol Behav. 2013;35:475–86.

    Article  Google Scholar 

  106. Kotov R, Gamez W, Schmidt F, Watson D. Linking "Big" Personality Traits to Anxiety, Depressive, and Substance Use Disorders: A Meta-Analysis. Psychological Bull. 2010;136:768–821.

    Article  Google Scholar 

  107. Stanton K, Watson D. Positive and Negative Affective Dysfunction in Psychopathology. Soc Personal Psychol Compass. 2014;8:555–67.

    Article  Google Scholar 

  108. Clark LA, Watson D, Mineka S. Temperament, Personality, and the Mood and Anxiety Disorders. J Abnorm Psychol. 1994;103:103–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Edna Furman-Haran and Fanny Attar for MRI procedures. KCA is incumbent of The Sam and Frances Belzberg Research Fellow Chair in Memory and Learning, and was also supported by a Swiss Society of Friends of the Weizmann Institute Postdoctoral Fellowship grant. The work was supported by a Joy-Ventures grant, an ISF #2352/19, and an ERC-2016-CoG #724910 grants to RP.

Author information

Authors and Affiliations

Authors

Contributions

KCA and RP designed the study. KCA collected the data. KCA and IT analyzed the data. KCA, IT, and RP wrote and edited the paper.

Corresponding authors

Correspondence to Kristoffer C. Aberg or Rony Paz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aberg, K.C., Toren, I. & Paz, R. A neural and behavioral trade-off between value and uncertainty underlies exploratory decisions in normative anxiety. Mol Psychiatry 27, 1573–1587 (2022). https://doi.org/10.1038/s41380-021-01363-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01363-z

This article is cited by

Search

Quick links