Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microglia and their LAG3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive stimulation

Abstract

Despite evidence implicating microglia in the etiology and pathophysiology of major depression, there is paucity of information regarding the contribution of microglia-dependent molecular pathways to antidepressant procedures. In this study, we investigated the role of microglia in a mouse model of depression (chronic unpredictable stress—CUS) and its reversal by electroconvulsive stimulation (ECS), by examining the effects of microglia depletion with the colony stimulating factor-1 antagonist PLX5622. Microglia depletion did not change basal behavioral measures or the responsiveness to CUS, but it completely abrogated the therapeutic effects of ECS on depressive-like behavior and neurogenesis impairment. Treatment with the microglia inhibitor minocycline concurrently with ECS also diminished the antidepressant and pro-neurogenesis effects of ECS. Hippocampal RNA-Seq analysis revealed that ECS significantly increased the expression of genes related to neurogenesis and dopamine signaling, while reducing the expression of several immune checkpoint genes, particularly lymphocyte-activating gene-3 (Lag3), which was the only microglial transcript significantly altered by ECS. None of these molecular changes occurred in microglia-depleted mice. Immunohistochemical analyses showed that ECS reversed the CUS-induced changes in microglial morphology and elevation in microglial LAG3 receptor expression. Consistently, either acute or chronic systemic administration of a LAG3 monoclonal antibody, which readily penetrated into the brain parenchyma and was found to serve as a direct checkpoint blocker in BV2 microglia cultures, rapidly rescued the CUS-induced microglial alterations, depressive-like symptoms, and neurogenesis impairment. These findings suggest that brain microglial LAG3 represents a promising target for novel antidepressant therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of microglia depletion on body weight and behavior.
Fig. 2: Involvement of microglia in the antidepressant and neurogenesis-enhancing effects of ECS.
Fig. 3: ECS-induced molecular changes are abrogated in microglia-depleted mice.
Fig. 4: Effects of ECS on microglia number, morphology and LAG-expression.
Fig. 5: Effects of acute and chronic administration of LAG3 mAb on depressive-like symptomatology, microglial morphology and neurogenesis in CUS-exposed mice.
Fig. 6: A model depicting the role of microglia in the development of chronic unpredictable stress (CUS)-induced depression and its reversal by ECS.

Similar content being viewed by others

Data and materials availability

The RNA-Seq data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE123027.

References

  1. Krishnan V, Nestler EJ. Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry. 2010;167:1305–20.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 2012;35:47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: a systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019;72:268–75.

    Google Scholar 

  4. Yirmiya R, Weidenfeld J, Pollak Y, Morag M, Morag A, Avitsur R, et al. Cytokines, “depression due to a general medical condition,” and antidepressant drugs. Adv Exp Med Biol. 1999;461:283–316.

    Article  CAS  PubMed  Google Scholar 

  5. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis. 2009;24:27–53.

    Article  CAS  PubMed  Google Scholar 

  6. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.

    Article  CAS  PubMed  Google Scholar 

  7. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71:171–86.

    Article  CAS  PubMed  Google Scholar 

  10. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57.

    Article  CAS  PubMed  Google Scholar 

  11. Kern S, Skoog I, Börjesson-Hanson A, Blennow K, Zetterberg H, Ostling S, et al. Lower CSF interleukin-6 predicts future depression in a population-based sample of older women followed for 17 years. Brain Behav Immun. 2013;32:153–8.

    Article  CAS  PubMed  Google Scholar 

  12. Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011;36:2452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P. Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci USA. 2011;108:9262–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung HS, Kim H, Bae H. Phenelzine (monoamine oxidase inhibitor) increases production of nitric oxide and proinflammatory cytokines via the NF-kappaB pathway in lipopolysaccharide-activated microglia cells. Neurochem Res. 2012;37:2117–24.

    Article  CAS  PubMed  Google Scholar 

  15. Nettis MA, Lombardo G, Hastings C, Zajkowska Z, Mariani N, Nikkheslat N, et al. Augmentation therapy with minocycline in treatment-resistant depression patients with low-grade peripheral inflammation: results from a double-blind randomised clinical trial. Neuropsychopharmacology. 2021;46:939–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Attwells S, Setiawan E, Rusjan PM, Xu C, Hutton C, Rafiei D, et al. Translocator protein distribution volume predicts reduction of symptoms during open-label trial of celecoxib in major depressive disorder. Biol Psychiatry. 2020;88:649–56.

    Article  CAS  PubMed  Google Scholar 

  17. Savitz JB, Teague TK, Misaki M, Macaluso M, Wurfel BE, Meyer M, et al. Treatment of bipolar depression with minocycline and/or aspirin: an adaptive, 2x2 double-blind, randomized, placebo-controlled, phase IIA clinical trial. Transl Psychiatry. 2018;8:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70:31–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rapaport MH, Nierenberg AA, Schettler PJ, Kinkead B, Cardoos A, Walker R, et al. Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study. Mol Psychiatry. 2016;21:71–79.

    Article  CAS  PubMed  Google Scholar 

  20. Arteaga-Henriquez G, Simon MS, Burger B, Weidinger E, Wijkhuijs A, Arolt V, et al. Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in mdd patients: a systematic review of the literature in combination with an analysis of experimental data collected in the EU-MOODINFLAME Consortium. Front Psychiatry. 2019;10:458.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38:637–58.

    Article  CAS  PubMed  Google Scholar 

  22. Singhal G, Baune BT. Microglia: an interface between the loss of neuroplasticity and depression. Front Cell Neurosci. 2017;11:270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci. 2016;17:497–511.

    Article  CAS  PubMed  Google Scholar 

  24. Clark SM, Pocivavsek A, Nicholson JD, Notarangelo FM, Langenberg P, McMahon RP, et al. Reduced kynurenine pathway metabolism and cytokine expression in the prefrontal cortex of depressed individuals. J Psychiatry Neurosci. 2016;41:386–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–59.

    Article  CAS  PubMed  Google Scholar 

  26. Bayer TA, Buslei R, Havas L, Falkai P. Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett. 1999;271:126–8.

    Article  CAS  PubMed  Google Scholar 

  27. Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42:151–7.

    Article  PubMed  Google Scholar 

  28. Li H, Sagar AP, Keri S. Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. J Affect Disord. 2018;241:305–10.

    Article  PubMed  Google Scholar 

  29. Holmes SE, Hinz R, Conen S, Gregory CJ, Matthews JC, Anton-Rodriguez JM, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol Psychiatry. 2018;83:61–9.

    Article  CAS  PubMed  Google Scholar 

  30. Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015;72:268–75.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hannestad J, DellaGioia N, Gallezot JD, Lim K, Nabulsi N, Esterlis I, et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: a [(1)(1)C]PBR28 PET study. Brain Behav Immun. 2013;33:131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bufalino C, Hepgul N, Aguglia E, Pariante CM. The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav Immun. 2013;31:31–47.

    Article  CAS  PubMed  Google Scholar 

  33. Pantazatos SP, Huang YY, Rosoklija GB, Dwork AJ, Arango V, Mann JJ. Whole-transcriptome brain expression and exon-usage profiling in major depression and suicide: evidence for altered glial, endothelial and ATPase activity. Mol Psychiatry. 2017;22:760–73.

    Article  CAS  PubMed  Google Scholar 

  34. Mahajan GJ, Vallender EJ, Garrett MR, Challagundla L, Overholser JC, Jurjus G, et al. Altered neuro-inflammatory gene expression in hippocampus in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:177–86.

    Article  CAS  PubMed  Google Scholar 

  35. Tynan RJ, Weidenhofer J, Hinwood M, Cairns MJ, Day TA, Walker FR. A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia. Brain Behav Immun. 2012;26:469–79.

    Article  CAS  PubMed  Google Scholar 

  36. Hellwig S, Brioschi S, Dieni S, Frings L, Masuch A, Blank T, et al. Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav Immun. 2016;55:126–37.

    Article  PubMed  Google Scholar 

  37. Rimmerman N, Schottlender N, Reshef R, Dan-Goor N, Yirmiya R. The hippocampal transcriptomic signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain Behav Immun. 2017;61:184–96.

    Article  CAS  PubMed  Google Scholar 

  38. Milior G, Lecours C, Samson L, Bisht K, Poggini S, Pagani F, et al. Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain Behav Immun. 2015;55:114–25.

    Article  PubMed  CAS  Google Scholar 

  39. Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009;158:1021–9.

    Article  CAS  PubMed  Google Scholar 

  40. Reshef R, Kudryavitskaya E, Shani-Narkiss H, Isaacson B, Rimmerman N, Mizrahi A, et al. The role of microglia and their CX3CR1 signaling in adult neurogenesis in the olfactory bulb. Elife. 2017;6:e30809.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S, Tremblay ME. Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast. 2014;2014:610343.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Miller BR, Hen R. The current state of the neurogenic theory of depression and anxiety. Curr Opin Neurobiol. 2015;30:51–58.

    Article  CAS  PubMed  Google Scholar 

  43. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, et al. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry. 2011;16:1177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Du Preez A, Eum J, Eiben I, Eiben P, Zunszain PA, Pariante CM, et al. Do different types of stress differentially alter behavioural and neurobiological outcomes associated with depression in rodent models? A systematic review. Front Neuroendocrinol. 2021;61:100896.

    Article  PubMed  Google Scholar 

  45. Wohleb ES, Terwilliger R, Duman CH, Duman RS. Stress-induced neuronal colony stimulating factor 1 provokes microglia-mediated neuronal remodeling and depressive-like behavior. Biol Psychiatry. 2018;83:38–49.

    Article  CAS  PubMed  Google Scholar 

  46. Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT, et al. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci. 2011;31:6277–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hinwood M, Morandini J, Day TA, Walker FR. Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex. 2012;22:1442–54.

    Article  CAS  PubMed  Google Scholar 

  48. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun. 2007;21:47–59.

    Article  CAS  PubMed  Google Scholar 

  49. Wang YL, Han QQ, Gong WQ, Pan DH, Wang LZ, Hu W, et al. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation. 2018;15:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tong L, Gong Y, Wang P, Hu W, Wang J, Chen Z, et al. microglia loss contributes to the development of major depression induced by different types of chronic stresses. Neurochem Res. 2017;42:2698–711.

    Article  CAS  PubMed  Google Scholar 

  51. Cai Z, Ye T, Xu X, Gao M, Zhang Y, Wang D, et al. Antidepressive properties of microglial stimulation in a mouse model of depression induced by chronic unpredictable stress. Prog Neuropsychopharmacol Biol Psychiatry. 2020;101:109931.

    Article  CAS  PubMed  Google Scholar 

  52. Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2014;19:699–709.

    Article  CAS  PubMed  Google Scholar 

  53. Gong Y, Tong L, Yang R, Hu W, Xu X, Wang W, et al. Dynamic changes in hippocampal microglia contribute to depressive-like behavior induced by early social isolation. Neuropharmacology. 2018;135:223–33.

    Article  CAS  PubMed  Google Scholar 

  54. Maes M, Song C, Yirmiya R. Targeting IL-1 in depression. Expert Opin Thera Targets. 2012;16:1097–112.

    Article  CAS  Google Scholar 

  55. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry. 2008;13:717–28.

    Article  CAS  PubMed  Google Scholar 

  56. Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AMD, et al. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun. 2021;91:519–30.

    Article  CAS  PubMed  Google Scholar 

  57. Lisanby SH. Electroconvulsive therapy for depression. N Engl J Med. 2007;357:1939–45.

    Article  CAS  PubMed  Google Scholar 

  58. Goldfarb S, Fainstein N, Ben-Hur T. Electroconvulsive stimulation attenuates chronic neuroinflammation. JCI Insight. 2020;5:e137028.

    Article  PubMed Central  Google Scholar 

  59. Goldfarb S, Fainstein N, Ganz T, Vershkov D, Lachish M, Ben-Hur T. Electric neurostimulation regulates microglial activation via retinoic acid receptor alpha signaling. Brain Behav Immun. 2021;96:40–53.

    Article  CAS  PubMed  Google Scholar 

  60. Sepulveda-Rodriguez A, Li P, Khan T, Ma JD, Carlone CA, Bozzelli PL, et al. Electroconvulsive shock enhances responsive motility and purinergic currents in microglia in the mouse hippocampus. eNeuro. 2019;6:ENEURO.0056-19.2019.

  61. Jinno S, Kosaka T. Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock. Exp Neurol. 2008;212:440–7.

    Article  CAS  PubMed  Google Scholar 

  62. van Buel EM, Sigrist H, Seifritz E, Fikse L, Bosker FJ, Schoevers RA, et al. Mouse repeated electroconvulsive seizure (ECS) does not reverse social stress effects but does induce behavioral and hippocampal changes relevant to electroconvulsive therapy (ECT) side-effects in the treatment of depression. PLoS One. 2017;12:e0184603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15:300–12.

    Article  CAS  PubMed  Google Scholar 

  64. Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM. Brain microglia in psychiatric disorders. Lancet Psychiatry. 2017;4:563–72.

    Article  PubMed  Google Scholar 

  65. Dagher NN, Najafi AR, Kayala KM, Elmore MR, White TE, Medeiros R, et al. Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation. 2015;12:139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jansson L, Wennstrom M, Johanson A, Tingstrom A. Glial cell activation in response to electroconvulsive seizures. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:1119–28.

    Article  PubMed  Google Scholar 

  67. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci. 2001;21:2580–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reis DJ, Casteen EJ, Ilardi SS. The antidepressant impact of minocycline in rodents: a systematic review and meta-analysis. Sci Rep. 2019;9:261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Rosenblat JD, McIntyre RS. Efficacy and tolerability of minocycline for depression: a systematic review and meta-analysis of clinical trials. J Affect Disord. 2018;227:219–25.

    Article  CAS  PubMed  Google Scholar 

  70. Han Y, Zhang L, Wang Q, Zhang D, Zhao Q, Zhang J, et al. Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrinology. 2019;107:37–45.

    Article  CAS  PubMed  Google Scholar 

  71. Rotheneichner P, Lange S, O’Sullivan A, Marschallinger J, Zaunmair P, Geretsegger C, et al. Hippocampal neurogenesis and antidepressive therapy: shocking relations. Neural Plast. 2014;2014:723915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Brooks AK, Lawson MA, Smith RA, Janda TM, Kelley KW, McCusker RH. Interactions between inflammatory mediators and corticosteroids regulate transcription of genes within the Kynurenine Pathway in the mouse hippocampus. J Neuroinflamm. 2016;13:16.

    Article  CAS  Google Scholar 

  73. Miller CL, Llenos IC, Dulay JR, Weis S. Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res. 2006;1073:25–37.

    Article  PubMed  CAS  Google Scholar 

  74. Ogura Y, Parsons WH, Kamat SS, Cravatt BF. A calcium-dependent acyltransferase that produces N-acyl phosphatidylethanolamines. Nat Chem Biol. 2016;12:669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Haslinger A, Schwarz TJ, Covic M, Lie DC. Expression of Sox11 in adult neurogenic niches suggests a stage-specific role in adult neurogenesis. Eur J Neurosci. 2009;29:2103–14.

    Article  PubMed  Google Scholar 

  76. Takamura N, Nakagawa S, Masuda T, Boku S, Kato A, Song N, et al. The effect of dopamine on adult hippocampal neurogenesis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;50:116–24.

    Article  CAS  Google Scholar 

  77. Rossato JI, Bevilaqua LRM, Izquierdo I, Medina JH, Cammarota M. Dopamine Controls Persistence of Long-Term Memory Storage. Science. 2009;325:1017–20.

    Article  CAS  PubMed  Google Scholar 

  78. Kreisel T, Wolf B, Keshet E, Licht T. Unique role for dentate gyrus microglia in neuroblast survival and in VEGF-induced activation. Glia. 2019;67:594–618.

    Article  PubMed  Google Scholar 

  79. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, et al. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 2013;16:1896–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci. 2017;20:1162.

    Article  CAS  PubMed  Google Scholar 

  82. Workman CJ, Vignali DA. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol. 2003;33:970–9.

    Article  CAS  PubMed  Google Scholar 

  83. Goldberg MV, Drake CG. LAG-3 in cancer immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Deczkowska A, Amit I, Schwartz M. Microglial immune checkpoint mechanisms. Nat Neurosci. 2018;21:779–86.

    Article  CAS  PubMed  Google Scholar 

  85. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reshef R, Kreisel T, Beroukhim Kay D, Yirmiya R. Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis. Brain Behav Immun. 2014;41:239–50.

    Article  CAS  PubMed  Google Scholar 

  87. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9:268–75.

    Article  CAS  PubMed  Google Scholar 

  88. Sierra A, Tremblay ME, Wake H. Never-resting microglia: physiological roles in the healthy brain and pathological implications. Front Cell Neurosci. 2014;8:240.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RP, Hernandez MX, et al. Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci. 2015;35:9977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82:380–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Walter TJ, Crews FT. Microglial depletion alters the brain neuroimmune response to acute binge ethanol withdrawal. J Neuroinflammation. 2017;14:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Yang X, Ren H, Wood K, Li M, Qiu S, Shi FD, et al. Depletion of microglia augments the dopaminergic neurotoxicity of MPTP. FASEB J. 2018;32:3336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wahlund B, Piazza P, von Rosen D, Liberg B, Liljenström H. Seizure (Ictal)-EEG characteristics in subgroups of depressive disorder in patients receiving electroconvulsive therapy (ECT)-a preliminary study and multivariate approach. Comput Intell Neurosci. 2009;965209.

  94. Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540:230–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Martorell AJ, Paulson AL, Suk HJ, Abdurrob F, Drummond GT, Guan W, et al. Multi-sensory gamma stimulation ameliorates alzheimer’s-associated pathology and improves cognition. Cell. 2019;177:256–71 e222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xia J, Lu Z, Feng S, Yang J, Ji M. Different effects of immune stimulation on chronic unpredictable mild stress-induced anxiety- and depression-like behaviors depending on timing of stimulation. Int Immunopharmacol. 2018;58:48–56.

    Article  CAS  PubMed  Google Scholar 

  97. Kreisel T, Wolf B, Keshet E, Licht T. Unique role for dentate gyrus microglia in neuroblast survival and in VEGF-induced activation. Glia. 2018;67:594–618.

    Article  PubMed  Google Scholar 

  98. Mao XB, Ou MT, Karuppagounder SS, Kam TI, Yin XL, Xiong YL, et al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science. 2016;353:12.

    Article  CAS  Google Scholar 

  99. Graydon CG, Mohideen S, Fowke KR. LAG3’s enigmatic mechanism of action. Front Immunol. 2020;11:615317.

    Article  CAS  PubMed  Google Scholar 

  100. Triebel F. LAG-3: a regulator of T-cell and DC responses and its use in therapeutic vaccination. Trends Immunol. 2003;24:619–22.

    Article  CAS  PubMed  Google Scholar 

  101. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10:29–37.

    Article  CAS  PubMed  Google Scholar 

  102. Rexach JE, Polioudakis D, Yin A, Swarup V, Chang TS, Nguyen T, et al. Tau Pathology Drives Dementia Risk-Associated Gene Networks toward Chronic Inflammatory States and Immunosuppression. Cell Rep. 2020;33:108398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Buisson S, Triebel F. LAG-3 (CD223) reduces macrophage and dendritic cell differentiation from monocyte precursors. Immunology. 2005;114:369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-beta production in vivo. Sci Transl Med. 2011;3:84ra43.

    Article  PubMed  CAS  Google Scholar 

  105. Reiber H, Felgenhauer K. Protein transfer at the blood cerebrospinal fluid barrier and the quantitation of the humoral immune response within the central nervous system. Clin Chim Acta. 1987;163:319–28.

    Article  CAS  PubMed  Google Scholar 

  106. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20:1752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Friedman A, Kaufer D, Shemer J, Hendler I, Soreq H, Tur-Kaspa I. Pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response. Nat Med. 1996;2:1382–5.

    Article  CAS  PubMed  Google Scholar 

  108. Greene C, Hanley N, Campbell M. Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders. Transl Psychiatry. 2020;10:373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Niklasson F, Agren H. Brain energy metabolism and blood-brain barrier permeability in depressive patients: analyses of creatine, creatinine, urate, and albumin in CSF and blood. Biol Psychiatry. 1984;19:1183–206.

    CAS  PubMed  Google Scholar 

  110. Kealy J, Greene C, Campbell M. Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett. 2020;726:133664.

    Article  CAS  PubMed  Google Scholar 

  111. Wohleb ES, Powell ND, Godbout JP, Sheridan JF. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci. 2013;33:13820–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Grassivaro F, Menon R, Acquaviva M, Ottoboni L, Ruffini F, Bergamaschi A, et al. Convergence between microglia and peripheral macrophages phenotype during development and neuroinflammation. J Neurosci. 2020;40:784–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol. 2004;173:3916–24.

    Article  CAS  PubMed  Google Scholar 

  114. Horikawa H, Kato TA, Mizoguchi Y, Monji A, Seki Y, Ohkuri T, et al. Inhibitory effects of SSRIs on IFN-gamma induced microglial activation through the regulation of intracellular calcium. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:1306–16.

    Article  CAS  PubMed  Google Scholar 

  115. Hashioka S, Klegeris A, Monji A, Kato T, Sawada M, McGeer PL, et al. Antidepressants inhibit interferon-gamma-induced microglial production of IL-6 and nitric oxide. Exp Neurol. 2007;206:33–42.

    Article  CAS  PubMed  Google Scholar 

  116. Alboni S, Poggini S, Garofalo S, Milior G, El Hajj H, Lecours C, et al. Fluoxetine treatment affects the inflammatory response and microglial function according to the quality of the living environment. Brain Behav Immun. 2016;58:261–71.

    Article  CAS  PubMed  Google Scholar 

  117. Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR. Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex. 2012;23:1784–97.

    Article  PubMed  Google Scholar 

  118. Rimmerman N, Juknat A, Kozela E, Levy R, Bradshaw HB, Vogel Z. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells. Cell Mol Neurobiol. 2011;31:921–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Zehava Cohen for help in preparation of the figures. We thank Dr. Gilgi Friedlander from the Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM) for help with RNA-Seq and analysis. Postmortem brain tissue was donated by The Stanley Medical Research Institute brain collection. This research was supported by the Israel Science Foundation grant No. 1379/16 (to RY).

Author information

Authors and Affiliations

Authors

Contributions

NR and RY designed and directed the studies. HV, HG, LN, ER, EK RR, LA, SG, RR, EA, NS, LBH, CP, MA, ED, and KL performed the experiments. NR, HV, HG, LN, EK RR, KMR, DMM, ABZ, and RY analyzed the data. RY designed the concept and obtained funding. NR and RY wrote the manuscript.

Corresponding author

Correspondence to Raz Yirmiya.

Ethics declarations

Competing interests

D.M.M. has received speaker’s honoraria from MECTA and Otsuka and an honorarium from Janssen for participating in an esketamine advisory board meeting. The other authors declare no competing financial interests in relation to the work in this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimmerman, N., Verdiger, H., Goldenberg, H. et al. Microglia and their LAG3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive stimulation. Mol Psychiatry 27, 1120–1135 (2022). https://doi.org/10.1038/s41380-021-01338-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01338-0

This article is cited by

Search

Quick links