Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subtypes of schizophrenia identified by multi-omic measures associated with dysregulated immune function

Abstract

Epigenetic modifications are plausible molecular sources of phenotypic heterogeneity across schizophrenia patients. The current study investigated biological heterogeneity in schizophrenia using peripheral epigenetic profiles to delineate illness subtypes independent of their phenomenological manifestations. We applied epigenome-wide profiling with a DNA methylation array from blood samples of 63 schizophrenia patients and 59 healthy controls. Non-negative matrix factorization (NMF) and k-means clustering were performed to identify DNA methylation-related patient subtypes. The validity of the partition was tested by assessing the profile of the T cell receptor (TCR) repertoires. The uniqueness of the identified subtypes in relation to brain structural and clinical measures were evaluated. Two distinct patterns of DNA methylation profiles were identified in patients. One subtype (60.3% of patients) showed relatively limited changes in methylation levels and cell composition compared to controls, while a second subtype (39.7% of patients) exhibited widespread methylation level alterations among genes enriched in immune cell activity, as well as a higher proportion of neutrophils and lower proportion of lymphocytes. Differentiation of the two patient subtypes was validated by TCR repertoires, which paralleled the partition based on DNA methylation profiles. The subtype with widespread methylation modifications had higher symptom severity, performed worse on cognitive measures, and displayed greater reductions in fractional anisotropy of white matter tracts and evidence of gray matter thickening compared to the other subtype. Identification of a distinct subtype of schizophrenia with unique molecular, cerebral, and clinical features provide a novel parcellation of the schizophrenia syndrome with potential to guide development of individualized therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optimal rank determination by NMF.
Fig. 2: Over-representation analysis and cell decomposition.
Fig. 3: TCR repertoires analysis.
Fig. 4: Overlap between DNA methylation subtypes and TCR subtypes.

Similar content being viewed by others

Code availability

Analysis code are available upon request to the corresponding authors.

References

  1. Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, et al. Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry. 2016;173:373–84.

    Article  PubMed  Google Scholar 

  2. Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol. 2013;8:277–302.

    Article  CAS  PubMed  Google Scholar 

  3. Schmitt A, Martins-de-Souza D, Akbarian S, Cassoli JS, Ehrenreich H, Fischer A, et al. Consensus paper of the WFSBP Task Force on Biological Markers: criteria for biomarkers and endophenotypes of schizophrenia, part III: molecular mechanisms. World J Biol Psychiatry: Off J World Federation Societies Biol Psychiatry. 2017;18:330–56.

    Article  Google Scholar 

  4. Sun H, Lui S, Yao L, Deng W, Xiao Y, Zhang W, et al. Two patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiatry. 2015;72:678–86.

    Article  PubMed  Google Scholar 

  5. Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016;388:86–97.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry. 2020;25:1718–48.

    Article  PubMed  Google Scholar 

  7. Liu J, Chen J, Ehrlich S, Walton E, White T, Perrone-Bizzozero N, et al. Methylation patterns in whole blood correlate with symptoms in schizophrenia patients. Schizophr Bull. 2014;40:769–76.

    Article  PubMed  Google Scholar 

  8. Melas PA, Rogdaki M, Ösby U, Schalling M, Lavebratt C, Ekström TJ. Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J: Off Publ Federation Am Societies Exp Biol. 2012;26:2712–8.

    Article  CAS  Google Scholar 

  9. Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA. 2005;102:9341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tao R, Davis KN, Li C, Shin JH, Gao Y, Jaffe AE, et al. GAD1 alternative transcripts and DNA methylation in human prefrontal cortex and hippocampus in brain development, schizophrenia. Mol Psychiatry. 2018;23:1496–505.

    Article  CAS  PubMed  Google Scholar 

  11. Gao S, Cheng J, Li G, Sun T, Xu Y, Wang Y, et al. Catechol-O-methyltransferase gene promoter methylation as a peripheral biomarker in male schizophrenia. Eur Psychiatry: J Assoc Eur Psychiatrists. 2017;44:39–46.

    Article  CAS  Google Scholar 

  12. Abdolmaleky HM, Yaqubi S, Papageorgis P, Lambert AW, Ozturk S, Sivaraman V, et al. Epigenetic dysregulation of HTR2A in the brain of patients with schizophrenia and bipolar disorder. Schizophrenia Res. 2011;129:183–90.

    Article  Google Scholar 

  13. Cheah SY, McLeay R, Wockner LF, Lawford BR, Young RM, Morris CP, et al. Expression and methylation of BDNF in the human brain in schizophrenia. World J Biol Psychiatry: Off J World Federation Societies Biol Psychiatry. 2017;18:392–400.

    Article  Google Scholar 

  14. Rubin LH, Connelly JJ, Reilly JL, Carter CS, Drogos LL, Pournajafi-Nazarloo H, et al. Sex and diagnosis specific associations between DNA methylation of the oxytocin receptor gene with emotion processing and temporal-limbic and prefrontal brain volumes in psychotic disorders. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1:141–51.

    PubMed  Google Scholar 

  15. Montano C, Taub MA, Jaffe A, Briem E, Feinberg JI, Trygvadottir R, et al. Association of DNA methylation differences with schizophrenia in an epigenome-wide association study. JAMA Psychiatry. 2016;73:506–14.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aberg KA, McClay JL, Nerella S, Clark S, Kumar G, Chen W, et al. Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry. 2014;71:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chan RF, Shabalin AA, Montano C, Hannon E, Hultman CM, Fallin MD, et al. Independent methylome-wide association studies of schizophrenia detect consistent case-control differences. Schizophr Bull. 2020;46:319–27.

    PubMed  Google Scholar 

  18. Hannon E, Dempster E, Viana J, Burrage J, Smith AR, Macdonald R, et al. An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. Genome Biol. 2016;17:176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jaffe AE, Gao Y, Deep-Soboslay A, Tao R, Hyde TM, Weinberger DR, et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat Neurosci. 2016;19:40–7.

    Article  CAS  PubMed  Google Scholar 

  20. Wockner LF, Noble EP, Lawford BR, Young RM, Morris CP, Whitehall VL, et al. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry. 2014;4:e339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pai S, Li P, Killinger B, Marshall L, Jia P, Liao J, et al. Differential methylation of enhancer at IGF2 is associated with abnormal dopamine synthesis in major psychosis. Nat Commun. 2019;10:2046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chen C, Zhang C, Cheng L, Reilly JL, Bishop JR, Sweeney JA, et al. Correlation between DNA methylation and gene expression in the brains of patients with bipolar disorder and schizophrenia. Bipolar Disord. 2014;16:790–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Braun PR, Han S, Hing B, Nagahama Y, Gaul LN, Heinzman JT, et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry. 2019;9:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. First M, Spitzer R, Gibbon M, Williams J. Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-I/P). New York: Biometrics Research, New York State Psychiatry Institute; 1995.

    Google Scholar 

  25. Singh SP, Cooper JE, Fisher HL, Tarrant CJ, Lloyd T, Banjo J, et al. Determining the chronology and components of psychosis onset: The Nottingham Onset Schedule (NOS). Schizophr Res. 2005;80:117–30.

    Article  PubMed  Google Scholar 

  26. Gardner DM, Murphy AL, O’Donnell H, Centorrino F, Baldessarini RJ. International consensus study of antipsychotic dosing. Am J psychiatry. 2010;167:686–93.

    Article  PubMed  Google Scholar 

  27. Kay SR, Opler LA, Lindenmayer JP. The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation. Br J Psychiatry Suppl 1989; 59–67.

  28. Keefe RS, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L. The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res. 2004;68:283–97.

    Article  PubMed  Google Scholar 

  29. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinforma (Oxf, Engl). 2014;30:1363–9.

    Article  CAS  Google Scholar 

  30. Fortin JP, Triche TJ Jr., Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinforma (Oxf, Engl). 2017;33:558–60.

    CAS  Google Scholar 

  31. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinforma (Oxf, Engl). 2013;29:189–96.

    Article  CAS  Google Scholar 

  32. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, Apostolidou S, et al. An epigenetic signature in peripheral blood predicts active ovarian cancer. PloS ONE. 2009;4:e8274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinforma (Oxf, Engl). 2012;28:882–3.

    Article  CAS  Google Scholar 

  34. Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA. 2004;101:4164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database: J Biol Databases Curation. 2015;2015:bav028.

    Article  CAS  Google Scholar 

  37. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: a J Integr Biol. 2012;16:284–7.

    Article  CAS  Google Scholar 

  38. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, VL R, et al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Rahmani E, Yedidim R, Shenhav L, Schweiger R, Weissbrod O, Zaitlen N, et al. GLINT: a user-friendly toolset for the analysis of high-throughput DNA-methylation array data. Bioinforma (Oxf, Engl). 2017;33:1870–2.

    Article  CAS  Google Scholar 

  40. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinforma. 2012;13:86.

    Article  Google Scholar 

  41. Koestler DC, Jones MJ, Usset J, Christensen BC, Butler RA, Kobor MS, et al. Improving cell mixture deconvolution by identifying optimal DNA methylation libraries (IDOL). BMC Bioinforma. 2016;17:120.

    Article  CAS  Google Scholar 

  42. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén SE, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PloS ONE. 2012;7:e41361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV, et al. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Computational Biol. 2015;11:e1004503.

    Article  CAS  Google Scholar 

  44. Cannon TD, Kaprio J, Lonnqvist J, Huttunen M, Koskenvuo M. The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry. 1998;55:67–74.

    Article  CAS  PubMed  Google Scholar 

  45. van Os J, Rutten BP, Poulton R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull. 2008;34:1066–82.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Richetto J, Meyer U. Epigenetic modifications in Schizophrenia and related disorders: molecular scars of environmental exposures and source of phenotypic variability. Biol Psychiatry. 2020;89:215–26.

    Article  PubMed  CAS  Google Scholar 

  47. Gürel Ç, Kuşçu GC, Yavaşoğlu A, Biray, Avcı Ç. The clues in solving the mystery of major psychosis: the epigenetic basis of schizophrenia and bipolar disorder. Neurosci Biobehav Rev. 2020;113:51–61.

    Article  PubMed  CAS  Google Scholar 

  48. Alharbi RA, Pettengell R, Pandha HS, Morgan R. The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia. 2013;27:1000–8.

    Article  CAS  PubMed  Google Scholar 

  49. Bhatlekar S, Fields JZ, Boman BM. Role of HOX genes in stem cell differentiation and cancer. Stem Cells Int. 2018;2018:3569493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mandeville I, Aubin J, LeBlanc M, Lalancette-Hebert M, Janelle MF, Tremblay GM, et al. Impact of the loss of Hoxa5 function on lung alveogenesis. Am J Pathol. 2006;169:1312–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papadaki HA, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. 2003;34:308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xia J, Bolyard AA, Rodger E, Stein S, Aprikyan AA, Dale DC, et al. Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br J Haematol. 2009;147:535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Velu CS, Baktula AM, Grimes HL. Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood. 2009;113:4720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zahorec R. Ratio of neutrophil to lymphocyte counts–rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102:5–14.

    CAS  PubMed  Google Scholar 

  55. Steiner J, Frodl T, Schiltz K, Dobrowolny H, Jacobs R, Fernandes BS, et al. Innate immune cells and C-reactive protein in acute first-episode psychosis and schizophrenia: relationship to psychopathology and treatment. Schizophr Bull. 2020;46:363–73.

    Article  PubMed  Google Scholar 

  56. Bustan Y, Drapisz A, Ben Dor DH, Avrahami M, Schwartz-Lifshitz M, Weizman A, et al. Elevated neutrophil to lymphocyte ratio in non-affective psychotic adolescent inpatients: evidence for early association between inflammation and psychosis. Psychiatry Res. 2018;262:149–53.

    Article  PubMed  Google Scholar 

  57. Brinn A, Stone J. Neutrophil-lymphocyte ratio across psychiatric diagnoses: a cross-sectional study using electronic health records. BMJ Open. 2020;10:e036859.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Trepanier MO, Hopperton KE, Mizrahi R, Mechawar N, Bazinet RP. Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry. 2016;21:1009–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Kesteren CF, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7:e1075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167:261–80.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Khandaker GM, Zimbron J, Dalman C, Lewis G, Jones PB. Childhood infection and adult schizophrenia: a meta-analysis of population-based studies. Schizophrenia Res. 2012;139:161–8.

    Article  Google Scholar 

  62. Fillman SG, Weickert TW, Lenroot RK, Catts SV, Bruggemann JM, Catts VS, et al. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol Psychiatry. 2016;21:1090–8.

    Article  CAS  PubMed  Google Scholar 

  63. Lizano P, Lutz O, Xu Y, Rubin LH, Paskowitz L, Lee AM, et al. Multivariate relationships between peripheral inflammatory marker subtypes and cognitive and brain structural measures in psychosis. Mol Psychiatry 2020. https://doi.org/10.1038/s41380-020-00914-0. e-pub ahead of print 15 October 2020.

  64. Gonzalez H, Pacheco R. T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases. J Neuroinflammation. 2014;11:201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Engelhardt B. Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm (Vienna). 2006;113:477–85.

    Article  CAS  Google Scholar 

  66. Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci. 2017;20:136–44.

    Article  CAS  PubMed  Google Scholar 

  67. Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett. 2011;585:3770–80.

    Article  CAS  PubMed  Google Scholar 

  68. Montagne A, Zhao Z, Zlokovic BV. Alzheimer’s disease: a matter of blood-brain barrier dysfunction? J Exp Med. 2017;214:3151–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med. 2015;21:880–6.

    Article  CAS  PubMed  Google Scholar 

  70. Núñez C, Stephan-Otto C, Usall J, Bioque M, Lobo A, González-Pinto A, et al. Neutrophil count is associated with reduced gray matter and enlarged ventricles in first-episode psychosis. Schizophr Bull. 2019;45:846–58.

    Article  PubMed  Google Scholar 

  71. Hanson DR, Gottesman II. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis. BMC Med Genet. 2005;6:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Pong S, Karmacharya R, Sofman M, Bishop JR, Lizano P. The role of brain microvascular endothelial cell and blood-brain barrier dysfunction in Schizophrenia. Complex Psychiatry. 2020;6:30–46.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li Q, Zhou J, Cao X, Liu Q, Li Q, Li W, et al. Clonal characteristics of T-cell receptor repertoires in violent and non-violent patients with Schizophrenia. Front Psychiatry. 2018;9:403.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB, et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol (Baltim, Md: 1950). 2014;192:2689–98.

    Article  CAS  Google Scholar 

  75. Kohler S, Thiel A. Life after the thymus: CD31+ and CD31− human naive CD4+ T-cell subsets. Blood. 2009;113:769–74.

    Article  CAS  PubMed  Google Scholar 

  76. Alves Sousa AP, Johnson KR, Ohayon J, Zhu J, Muraro PA, Jacobson S. Comprehensive analysis of TCR-beta repertoire in patients with neurological immune-mediated disorders. Sci Rep. 2019;9:344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Amor S, Puentes F, Baker D, van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129:154–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Debnath M. Adaptive immunity in Schizophrenia: functional implications of T cells in the etiology, course and treatment. J Neuroimmune Pharm. 2015;10:610–9.

    Article  Google Scholar 

  79. Shah C, Zhang W, Xiao Y, Yao L, Zhao Y, Gao X, et al. Common pattern of gray-matter abnormalities in drug-naive and medicated first-episode schizophrenia: a multimodal meta-analysis. Psychol Med. 2017;47:401–13.

    Article  CAS  PubMed  Google Scholar 

  80. Pasternak O, Westin CF, Bouix S, Seidman LJ, Goldstein JM, Woo TU, et al. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci: Off J Soc Neurosci. 2012;32:17365–72.

    Article  CAS  Google Scholar 

  81. Abel KM, Drake R, Goldstein JM. Sex differences in schizophrenia. Int Rev Psychiatry (Abingdon, Engl). 2010;22:417–28.

    Article  Google Scholar 

  82. Mendrek A, Mancini-Marïe A. Sex/gender differences in the brain and cognition in schizophrenia. Neurosci Biobehav Rev. 2016;67:57–78.

    Article  PubMed  Google Scholar 

  83. Kirkpatrick B, Buchanan RW, Ross DE, Carpenter WT Jr. A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry. 2001;58:165–71.

    Article  CAS  PubMed  Google Scholar 

  84. Zhou J, Li M, Wang X, He Y, Xia Y, Sweeney J, et al. Drug response-related DNA methylation changes in Schizophrenia, bipolar disorder, and major depressive disorder. Front Neurosci. 2021;15:674273.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (grants 82120108014, 82071908, 81761128023, 81901702 and 81901705); China Postdoctoral Science Foundation (No.2020M673243); Sichuan Science and Technology Program (No. 2021JDTD0002 and 2020YFS0117); 1.3.5 project for disciplines of excellence, Post-Doctoral Research Project, West China Hospital, Sichuan University (Grant: 2ZYJC18020, ZYYC08001, and 018HXBH058) and the University of Cincinnati Schizophrenia Research Fund. LS also acknowledges the support from Humboldt Foundation Friedrich Wihelm Bessel Research Award and Chang Jiang Scholars.

Author information

Authors and Affiliations

Authors

Contributions

LS, GQ, XD and LC contributed to study design. LC, XY, HN, LS and WX contributed to acquisition of data. LC, PX and WX contributed to analysis and interpretation of the data. LC and PX contributed to the drafting of the paper. SJ, BJ, LS and XD made critical revision of the paper for important intellectual content. LS, GQ, XD and LC had full access to all data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding authors

Correspondence to Qiyong Gong, Dan Xie or Su Lui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Pi, X., Hu, N. et al. Subtypes of schizophrenia identified by multi-omic measures associated with dysregulated immune function. Mol Psychiatry 26, 6926–6936 (2021). https://doi.org/10.1038/s41380-021-01308-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01308-6

This article is cited by

Search

Quick links