Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopaminergic Ric GTPase activity impacts amphetamine sensitivity and sleep quality in a dopamine transporter-dependent manner in Drosophila melanogaster

Abstract

Dopamine (DA) is required for movement, sleep, and reward, and DA signaling is tightly controlled by the presynaptic DA transporter (DAT). Therapeutic and addictive psychostimulants, including methylphenidate (Ritalin; MPH), cocaine, and amphetamine (AMPH), markedly elevate extracellular DA via their actions as competitive DAT inhibitors (MPH, cocaine) and substrates (AMPH). DAT silencing in mice and invertebrates results in hyperactivity, reduced sleep, and blunted psychostimulant responses, highlighting DAT’s essential role in DA-dependent behaviors. DAT surface expression is not static; rather it is dynamically regulated by endocytic trafficking. PKC-stimulated DAT endocytosis requires the neuronal GTPase, Rit2, and Rit2 silencing in mouse DA neurons impacts psychostimulant sensitivity. However, it is unknown whether or not Rit2-mediated changes in psychostimulant sensitivity are DAT-dependent. Here, we leveraged Drosophila melanogaster to test whether the Drosophila Rit2 ortholog, Ric, impacts dDAT function, trafficking, and DA-dependent behaviors. Orthologous to hDAT and Rit2, dDAT and Ric directly interact, and the constitutively active Ric mutant Q117L increased dDAT surface levels and function in cell lines and ex vivo Drosophila brains. Moreover, DAergic RicQ117L expression caused sleep fragmentation in a DAT-dependent manner but had no effect on total sleep and daily locomotor activity. Importantly, we found that Rit2 is required for AMPH-stimulated DAT internalization in mouse striatum, and that DAergic RicQ117L expression significantly increased Drosophila AMPH sensitivity in a DAT-dependent manner, suggesting a conserved impact of Ric-dependent DAT trafficking on AMPH sensitivity. These studies support that the DAT/Rit2 interaction impacts both baseline behaviors and AMPH sensitivity, potentially by regulating DAT trafficking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: dDAT and Ric directly interact, and RicQ117L increases dDAT function and surface expression.
Fig. 2: DAergic Ric activity modulates sleep bout frequency in a dDAT-dependent manner.
Fig. 3: DAergic RicQ117L increases AMPH sensitivity in Drosophila.
Fig. 4: RicQ117L-enhanced AMPH sensitivity requires dDAT expression.
Fig. 5: Rit2 is required for AMPH-stimulated DAT internalization in mouse striatum.

Similar content being viewed by others

References

  1. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    CAS  PubMed  Google Scholar 

  2. Schultz W. Multiple dopamine functions at different time courses. Annu Rev Neurosci. 2007;30:259–88.

    CAS  PubMed  Google Scholar 

  3. Sharma A, Couture J. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann Pharmacother. 2014;48:209–25.

    PubMed  Google Scholar 

  4. Howes OD, McCutcheon R, Owen MJ, Murray RM. The role of genes, stress, and dopamine in the development of schizophrenia. Biol Psychiatry. 2017;81:9–20.

    CAS  PubMed  Google Scholar 

  5. Eissa N, Al-Houqani M, Sadeq A, Ojha SK, Sasse A, Sadek B. Current enlightenment about etiology and pharmacological treatment of autism spectrum disorder. Front Neurosci. 2018;12:304.

    PubMed  PubMed Central  Google Scholar 

  6. Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson’s disease. J Neural Transm. 2019;126:377–96. https://doi.org/10.1007/s00702-019-01970-9.

    Article  CAS  PubMed  Google Scholar 

  7. Iversen SD, Iversen LL. Dopamine: 50 years in perspective. Trends Neurosci. 2007;30:188–93.

    CAS  PubMed  Google Scholar 

  8. Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharm Rev. 2011;63:585–640.

    CAS  PubMed  Google Scholar 

  9. Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG. Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Brain Res Rev. 1998;26:148–53.

    CAS  PubMed  Google Scholar 

  10. Sitte HH, Freissmuth M. Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharm Sci. 2015;36:41–50.

    CAS  PubMed  Google Scholar 

  11. Amara SG, Sonders MS. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend. 1998;51:87–96.

    CAS  PubMed  Google Scholar 

  12. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature. 1996;379:606–12.

    CAS  PubMed  Google Scholar 

  13. Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 2001;21:1787–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kume K, Kume S, Park SK, Hirsh J, Jackson FR. Dopamine is a regulator of arousal in the fruit fly. J Neurosci. 2005;25:7377–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pizzo AB, Karam CS, Zhang Y, Yano H, Freyberg RJ, Karam DS, et al. The membrane raft protein Flotillin-1 is essential in dopamine neurons for amphetamine-induced behavior in Drosophila. Mol Psychiatry. 2013;18:824–33.

    CAS  PubMed  Google Scholar 

  16. Grünhage F, Schulze TG, Müller DJ, Lanczik M, Franzek E, Albus M, et al. Systematic screening for DNA sequence variation in the coding region of the human dopamine transporter gene (DAT1). Mol Psychiatry. 2000;5:275–82.

    PubMed  Google Scholar 

  17. Mazei-Robison MS, Blakely RD. Expression studies of naturally occurring human dopamine transporter variants identifies a novel state of transporter inactivation associated with Val382Ala. Neuropharmacology. 2005;49:737–49.

    CAS  PubMed  Google Scholar 

  18. Sakrikar D, Mazei-Robison MS, Mergy MA, Richtand NW, Han Q, Hamilton PJ, et al. Attention deficit/hyperactivity disorder-derived coding variation in the dopamine transporter disrupts microdomain targeting and trafficking regulation. J Neurosci. 2012;32:5385–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bowton E, Saunders C, Reddy IA, Campbell NG, Hamilton PJ, Henry LK, et al. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking. Transl Psychiatry. 2014;4:e464.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurian MA, Zhen J, Cheng SY, Li Y, Mordekar SR, Jardine P, et al. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest. 2009;119:1595–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamilton PJ, Campbell NG, Sharma S, Erreger K, Herborg Hansen F, Saunders C, et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry. 2013;18:1315–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bermingham DP, Blakely RD. Kinase-dependent regulation of monoamine neurotransmitter transporters. Pharm Rev. 2016;68:888–953.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharm Sci. 2013;34:489–96.

    CAS  PubMed  Google Scholar 

  24. Fagan RR, Kearney PJ, Melikian HE. In situ regulated dopamine transporter trafficking: there’s no place like home. Neurochem Res. 2020;45:1335–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Melikian HE, Buckley KM. Membrane trafficking regulates the activity of the human dopamine transporter. J Neurosci. 1999;19:7699–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Daniels GM, Amara SG. Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J Biol Chem. 1999;274:35794–801.

    CAS  PubMed  Google Scholar 

  27. Gabriel LR, Wu S, Kearney P, Bellve KD, Standley C, Fogarty KE, et al. Dopamine transporter endocytic trafficking in striatal dopaminergic neurons: differential dependence on dynamin and the actin cytoskeleton. J Neurosci. 2013;33:17836–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee CH, Della NG, Chew CE, Zack DJ. Rin, a neuron-specific and calmodulin-binding small G-protein, and Rit define a novel subfamily of ras proteins. J Neurosci. 1996;16:6784–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wes PD, Yu M, Montell C. RIC, a calmodulin-binding Ras-like GTPase. EMBO J. 1996;15:5839–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spencer ML, Shao H, Tucker HM, Andres DA. Nerve growth factor-dependent activation of the small GTPase Rin. J Biol Chem. 2002;277:17605–15.

    CAS  PubMed  Google Scholar 

  31. Zhou Q, Li J, Wang H, Yin Y, Zhou J. Identification of nigral dopaminergic neuron-enriched genes in adult rats. Neurobiol Aging. 2011;32:313–26.

    CAS  PubMed  Google Scholar 

  32. Cai W, Rudolph JL, Sengoku T, Andres DA. Rit GTPase regulates a p38 MAPK-dependent neuronal survival pathway. Neurosci Lett. 2012;531:125–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi GX, Cai W, Andres DA. Rit subfamily small GTPases: regulators in neuronal differentiation and survival. Cell Signal. 2013;25:2060–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bossers K, Meerhoff G, Balesar R, van Dongen JW, Kruse CG, Swaab DF, et al. Analysis of gene expression in Parkinson’s disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathol. 2009;19:91–107.

    CAS  PubMed  Google Scholar 

  35. Pankratz N, Beecham GW, DeStefano AL, Dawson TM, Doheny KF, Factor SA, et al. Meta-analysis of Parkinson’s disease: identification of a novel locus, RIT2. Ann Neurol. 2012;71:370–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C, et al. Strong synaptic transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci USA. 2010;107:10584–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bouquillon S, Andrieux J, Landais E, Duban-Bedu B, Boidein F, Lenne B, et al. A 5.3Mb deletion in chromosome 18q12.3 as the smallest region of overlap in two patients with expressive speech delay. Eur J Med Genet. 2011;54:194–7.

    PubMed  Google Scholar 

  38. Latourelle JC, Dumitriu A, Hadzi TC, Beach TG, Myers RH. Evaluation of Parkinson disease risk variants as expression-QTLs. PLoS One. 2012;7:e46199.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Emamalizadeh B, Movafagh A, Akbari M, Kazeminasab S, Fazeli A, Motallebi M, et al. RIT2, a susceptibility gene for Parkinson’s disease in Iranian population. Neurobiol Aging. 2014;35:e27–e28.

    CAS  PubMed  Google Scholar 

  40. Liu X, Shimada T, Otowa T, Wu YY, Kawamura Y, Tochigi M, et al. Genome-wide association study of autism spectrum disorder in the East Asian Populations. Autism Res. 2016;9:340–9.

    PubMed  Google Scholar 

  41. Emamalizadeh B, Jamshidi J, Movafagh A, Ohadi M, Khaniani MS, Kazeminasab S, et al. RIT2 polymorphisms: is there a differential association? Mol Neurobiol. 2017;54:2234–40.

    CAS  PubMed  Google Scholar 

  42. Hamedani SY, Gharesouran J, Noroozi R, Sayad A, Omrani MD, Mir A, et al. Ras-like without CAAX 2 (RIT2): a susceptibility gene for autism spectrum disorder. Metab Brain Dis. 2017;32:751–5.

    CAS  PubMed  Google Scholar 

  43. Fagan RR, Kearney PJ, Sweeney CG, Luethi D, Uiterkamp FES, Schicker K, et al. Dopamine transporter trafficking and Rit2 GTPase: mechanism of action and in vivo impact. J Biol Chem. 2020;295:5229–44. https://doi.org/10.1074/jbc.RA120.012628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Navaroli DM, Stevens ZH, Uzelac Z, Gabriel L, King MJ, Lifshitz LM, et al. The plasma membrane-associated GTPase Rin interacts with the dopamine transporter and is required for protein kinase C-regulated dopamine transporter trafficking. J Neurosci. 2011;31:13758–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sweeney CG, Kearney PJ, Fagan RR, Smith LA, Bolden NC, Zhao-Shea R, et al. Conditional, inducible gene silencing in dopamine neurons reveals a sex-specific role for Rit2 GTPase in acute cocaine response and striatal function. Neuropsychopharmacology. 2020;45:384–93.

    CAS  PubMed  Google Scholar 

  46. Martin CA, Krantz DE. Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochem Int. 2014;73:71–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pizzo AB, Karam CS, Zhang Y, Ma CL, McCabe BD, Javitch JA. Amphetamine-induced behavior requires CaMKII-dependent dopamine transporter phosphorylation. Mol Psychiatry. 2014;19:279–81.

    CAS  PubMed  Google Scholar 

  48. Hamilton PJ, Belovich AN, Khelashvili G, Saunders C, Erreger K, Javitch JA, et al. PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Nat Chem Biol. 2014;10:582–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cartier E, Hamilton PJ, Belovich AN, Shekar A, Campbell NG, Saunders C, et al. Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (hDAT R51W) in dopamine neurotransmission and behaviors. EBioMedicine. 2015;2:135–46.

    PubMed  PubMed Central  Google Scholar 

  50. Foley LE, Ling J, Joshi R, Evantal N, Kadener S, Emery P. Drosophila PSI controls circadian period and the phase of circadian behavior under temperature cycle via tim splicing. Elife. 2019;8:e50063. https://doi.org/10.7554/eLife.50063.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Lamba P, Guo P, Emery P. miR-124 regulates the phase of drosophila circadian locomotor behavior. J Neurosci. 2016;36:2007–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Farley JE, Burdett TC, Barria R, Neukomm LJ, Kenna KP, Landers JE, et al. Transcription factor Pebbled/RREB1 regulates injury-induced axon degeneration. Proc Natl Acad Sci USA. 2018;115:1358–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith GA, Lin TH, Sheehan AE, Van der Goes van Naters W, Neukomm LJ, Graves HK, et al. Glutathione S-transferase regulates mitochondrial populations in axons through increased glutathione oxidation. Neuron. 2019;103:52–65.e56.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Parisky KM, Agosto Rivera JL, Donelson NC, Kotecha S, Griffith LC. Reorganization of sleep by temperature in drosophila requires light, the homeostat, and the Circadian clock. Curr Biol. 2016;26:882–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Donelson NC, Kim EZ, Slawson JB, Vecsey CG, Huber R, Griffith LC. High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS ONE. 2012;7:e37250.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sweeney CG, Tremblay BP, Stockner T, Sitte HH, Melikian HE. Dopamine transporter amino and carboxyl termini synergistically contribute to substrate and inhibitor affinities. J Biol Chem. 2017;292:1302–9.

    CAS  PubMed  Google Scholar 

  57. Wu S, Bellve KD, Fogarty KE, Melikian HE. Ack1 is a dopamine transporter endocytic brake that rescues a trafficking-dysregulated ADHD coding variant. Proc Natl Acad Sci USA. 2015;112:15480–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Porzgen P, Park SK, Hirsh J, Sonders MS, Amara SG. The antidepressant-sensitive dopamine transporter in Drosophila melanogaster: a primordial carrier for catecholamines. Mol Pharm. 2001;59:83–95.

    CAS  Google Scholar 

  59. Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol. 2003;54:618–27.

    CAS  PubMed  Google Scholar 

  60. Ueno T, Tomita J, Tanimoto H, Endo K, Ito K, Kume S, et al. Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat Neurosci. 2012;15:1516–23.

    CAS  PubMed  Google Scholar 

  61. Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K, et al. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci USA. 2011;108:834–9.

    CAS  PubMed  Google Scholar 

  62. Koh K, Evans JM, Hendricks JC, Sehgal A. A Drosophila model for age-associated changes in sleep:wake cycles. Proc Natl Acad Sci USA. 2006;103:13843–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep. 2017;9:151–61.

    PubMed  PubMed Central  Google Scholar 

  64. Agosto J, Choi JC, Parisky KM, Stilwell G, Rosbash M, Griffith LC. Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci. 2008;11:354–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Belovich AN, Aguilar JI, Mabry SJ, Cheng MH, Zanella D, Hamilton PJ, et al. A network of phosphatidylinositol (4,5)-bisphosphate (PIP2) binding sites on the dopamine transporter regulates amphetamine behavior in Drosophila Melanogaster. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-019-0620-0.

  66. Potdar S, Daniel DK, Thomas FA, Lall S, Sheeba V. Sleep deprivation negatively impacts reproductive output in Drosophila melanogaster. J. Exp. Biol. 2018;221(Pt 6):jeb174771.

  67. Andretic R, Kim YC, Jones FS, Han KA, Greenspan RJ. Drosophila D1 dopamine receptor mediates caffeine-induced arousal. Proc Natl Acad Sci USA. 2008;105:20392–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nall AH, Shakhmantsir I, Cichewicz K, Birman S, Hirsh J, Sehgal A. Caffeine promotes wakefulness via dopamine signaling in Drosophila. Sci Rep. 2016;6:20938.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME, et al. Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci USA. 2000;97:6850–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hong WC, Amara SG. Differential targeting of the dopamine transporter to recycling or degradative pathways during amphetamine- or PKC-regulated endocytosis in dopamine neurons. FASEB J. 2013;27:2995–3007.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wheeler DS, Underhill SM, Stolz DB, Murdoch GH, Thiels E, Romero G, et al. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine. Proc Natl Acad Sci USA. 2015;112:E7138–7147.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Campbell NG, Shekar A, Aguilar JI, Peng D, Navratna V, Yang D, et al. Structural, functional, and behavioral insights of dopamine dysfunction revealed by a deletion in SLC6A3. Proc Natl Acad Sci USA. 2019;116:3853–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. DiCarlo GE, Aguilar JI, Matthies HJ, Harrison FE, Bundschuh KE, West A, et al. Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors. J Clin Invest. 2019;129:3407–19.

    PubMed  PubMed Central  Google Scholar 

  74. Hamilton PJ, Campbell NG, Sharma S, Erreger K, Hansen FH, Saunders C, et al. Drosophila melanogaster: a novel animal model for the behavioral characterization of autism-associated mutations in the dopamine transporter gene. Mol Psychiatry. 2013;18:1235.

    CAS  PubMed  Google Scholar 

  75. Harrison SM, Rudolph JL, Spencer ML, Wes PD, Montell C, Andres DA, et al. Activated RIC, a small GTPase, genetically interacts with the Ras pathway and calmodulin during Drosophila development. Dev Dyn. 2005;232:817–26.

    CAS  PubMed  Google Scholar 

  76. Cai W, Rudolph JL, Harrison SM, Jin L, Frantz AL, Harrison DA, et al. An evolutionarily conserved Rit GTPase-p38 MAPK signaling pathway mediates oxidative stress resistance. Mol Biol Cell. 2011;22:3231–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Walkinshaw E, Gai Y, Farkas C, Richter D, Nicholas E, Keleman K, et al. Identification of genes that promote or inhibit olfactory memory formation in Drosophila. Genetics. 2015;199:1173–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jacob PF, Waddell S. Spaced training forms complementary long-term memories of opposite valence in drosophila. Neuron. 2020;106:977–91.e974.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Loder MK, Melikian HE. The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem. 2003;278:22168–74.

    CAS  PubMed  Google Scholar 

  80. Salahpour A, Ramsey AJ, Medvedev IO, Kile B, Sotnikova TD, Holmstrand E, et al. Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter. Proc Natl Acad Sci USA. 2008;105:4405–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Makos MA, Kim YC, Han KA, Heien ML, Ewing AG. In vivo electrochemical measurements of exogenously applied dopamine in Drosophila melanogaster. Anal Chem. 2009;81:1848–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ferris MJ, Espana RA, Locke JL, Konstantopoulos JK, Rose JH, Chen R, et al. Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proc Natl Acad Sci USA. 2014;111:E2751–2759.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen R, Tilley MR, Wei H, Zhou F, Zhou FM, Ching S, et al. Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proc Natl Acad Sci USA. 2006;103:9333–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Andretic R, van Swinderen B, Greenspan RJ. Dopaminergic modulation of arousal in Drosophila. Curr Biol. 2005;15:1165–75.

    CAS  PubMed  Google Scholar 

  85. Bainton RJ, Tsai LT, Singh CM, Moore MS, Neckameyer WS, Heberlein U. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol. 2000;10:187–94.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Tucker Conklin for excellent technical assistance, and Dr. Ratna Chaturvedi for assistance and training with Drosophila sleep studies and analyses.

Author information

Authors and Affiliations

Authors

Contributions

R.R.F., P.J.K., D. L., and P.E. performed experiments. R.R.F., P.J.K., D. L., H.H.S., P.E., and H.E.M designed experiments, analyzed data, and wrote the manuscript.

Corresponding author

Correspondence to Haley E. Melikian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagan, R.R., Kearney, P.J., Luethi, D. et al. Dopaminergic Ric GTPase activity impacts amphetamine sensitivity and sleep quality in a dopamine transporter-dependent manner in Drosophila melanogaster. Mol Psychiatry 26, 7793–7802 (2021). https://doi.org/10.1038/s41380-021-01275-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01275-y

Search

Quick links