Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Neurophysiological correlate of incubation of craving in individuals with methamphetamine use disorder

Abstract

Previous studies both in laboratory animals and humans have reported that abstinence induces incubation of cue-induced drug craving for nicotine, alcohol, cocaine, and methamphetamine. However, current experimental procedures utilized to study incubation of methamphetamine craving do not incorporate the temporal dynamics of neuropsychological measures and electrophysiological activities associated with this incubation process. This study utilized the high-density electroencephalogram (EEG) signals as a rapid, inexpensive, and noninvasive measure of cue-induced craving potential. A total of 156 male individuals with methamphetamine use disorder (MUD) enrolled in this multisite, cross-sectional study. Structured clinical interview data, self-report questionnaires (cued craving, quality of sleep, impulsivity, anxiety, and depression) and resting-state, eye-closed 128 high-density channel EEG signals were collected at 5 abstinence duration time points (<1, 1–3, 3–6, 6–12, and 12–24 months) to track the neuropsychological and neurophysiological signatures. Cue-induced craving was higher after 1–3 months than after the other time points. This incubation effect was also observed for sleep quality but not for anxiety, depression, and impulsivity symptoms, along with exhibited decreased power spectrum for theta (5.5–8 Hz) and alpha (8–13 Hz), and increased in beta (16.5–26.5 Hz) frequency band. Source reconstructed resting-state EEG analysis showed increased synchronization of medial prefrontal cortex (MPFC) for the beta frequency band in 1–3 months abstinent MUD group, and associated with the incubation of craving. Remarkably, the robust incubation-related abnormalities may be driven by beta-band source space connectivity between MPFC and bilateral orbital gyrus (ORB). Our findings suggest the enhancement of beta activity in the incubation period most likely originates from a dysfunction involving frontal brain regions. This neurophysiological signature of incubation of craving can be used to identify individuals who might be most susceptible to relapse, providing a potential insight into future therapeutic interventions for MUD via neuromodulation of beta activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of the main procedure and analyses of multi-site cross-sectional study.
Fig. 2: Dynamics in neuropsychological measures.
Fig. 3: Fitting curve of cued-craving.
Fig. 4: Analyses on sensor level.
Fig. 5: Source reconstruction of resting-state EEG.
Fig. 6: Abstinent networks summarized by function connectivity between 31 ROIs in 6 networks for four carrier frequencies (theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30 Hz, gamma: 30–50 Hz).

Similar content being viewed by others

Data and materials availability

Original data are available upon request from corresponding author.

References

  1. Office of China National Narcotics Control Commission. Drug situation in China. 2019. Retrieved from http://www.nncc626.com/2020-06/25/c_1210675877.htm. Accessed 20 June 2021.

  2. Brandon TH, Vidrine JI, Litvin EB. Relapse and relapse prevention. Annu Rev Clin Psychol. 2007;3:257–84.

    Article  PubMed  Google Scholar 

  3. Sinha R. New findings on biological factors predicting addiction relapse vulnerability. Curr Psychiatry Rep. 2011;13:398–405.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP. Limbic activation during cue-induced cocaine craving. Am J Psychiatry. 1999;156:11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clin observations Arch Gen Psychiatry. 1986b;43:107–13.

    Article  CAS  Google Scholar 

  6. Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers: clinical observations. Arch Gen Psychiatry. 1986a;43:107–13.

    Article  CAS  PubMed  Google Scholar 

  7. Grimm JW, Hope BT, Wise RA, Shaham Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature. 2001;412:141–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pickens CL, Airavaara M, Theberge F, Fanous S, Hope BT, Shaham Y. Neurobiology of the incubation of drug craving. Trends Neurosci. 2011;34:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venniro M, Caprioli D, Shaham Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog Brain Res. 2016;224:25–52.

    Article  PubMed  Google Scholar 

  10. Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci. 2016;17:351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bedi G, Preston KL, Epstein DH, Heishman SJ, Marrone GF, Shaham Y, et al. Incubation of cue-induced cigarette craving during abstinence in human smokers. Biol Psychiatry. 2011;69:708–11.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li P, Wu P, Xin X, Fan YL, Wang GB, Wang F, et al. Incubation of alcohol craving during abstinence in patients with alcohol dependence. Addict Biol. 2015;20:513–22.

    Article  PubMed  Google Scholar 

  13. Parvaz MA, Moeller SJ, Goldstein RZ. Incubation of cue-induced craving in adults addicted to cocaine measured by electroencephalography. JAMA Psychiatry. 2016;73:1127–34.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang G, Shi J, Chen N, Xu L, Li J, Li P, et al. Effects of length of abstinence on decision-making and craving in methamphetamine abusers. PloS ONE. 2013;8:e68791–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Altshuler RD, Lin H, Li X. Neural mechanisms underlying incubation of methamphetamine craving: a mini-review. Pharmacol Biochem Behav. 2020;199:173058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen B, Wang Y, Liu X, Liu Z, Dong Y, Huang YH. Sleep regulates incubation of cocaine craving. J Neurosci. 2015;35:13300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Franken IH, Dietvorst RC, Hesselmans M, Franzek EJ, van de Wetering BJ, Van Strien JW. Cocaine craving is associated with electrophysiological brain responses to cocaine-related stimuli. Addict Biol. 2008;13:386–92.

    Article  PubMed  Google Scholar 

  18. Marhe R, van de Wetering BJM, Franken IHA. Error-related brain activity predicts cocaine use after treatment at 3-month follow-up. Biol Psychiatry. 2013;73:782–8.

    Article  CAS  PubMed  Google Scholar 

  19. Brown DR, Jackson TCJ, Claus ED, Votaw VR, Stein ER, Robinson CSH, et al. Decreases in the late positive potential to alcohol images among alcohol treatment seekers following mindfulness-based relapse prevention. Alcohol Alcohol. 2019;55:78–85.

    Article  Google Scholar 

  20. Andrew C, Fein G. Induced theta oscillations as biomarkers for alcoholism. Clin Neurophysiol. 2010;121:350–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang GY, Kydd R, Wouldes TA, Jensen M, Russell BR. Changes in resting EEG following methadone treatment in opiate addicts. Clin Neurophysiol. 2015;126:943–50.

    Article  PubMed  Google Scholar 

  22. Leyton M, Vezina P. Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. Trends Pharmacol Sci. 2014;35:268–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newton TF, Cook IA, Kalechstein AD, Duran S, Monroy F, Ling W, et al. Quantitative EEG abnormalities in recently abstinent methamphetamine dependent individuals. Clin Neurophysiol. 2003;114:410–5.

    Article  PubMed  Google Scholar 

  24. Newton TF, Kalechstein AD, Hardy DJ, Cook IA, Nestor L, Ling W, et al. Association between quantitative EEG and neurocognition in methamphetamine-dependent volunteers. Clin Neurophysiol. 2004;115:194–8.

    Article  CAS  PubMed  Google Scholar 

  25. Porjesz B, Rangaswamy M, Kamarajan C, Jones KA, Padmanabhapillai A, Begleiter H. The utility of neurophysiological markers in the study of alcoholism. Clin Neurophysiol. 2005;116:993–1018.

    Article  PubMed  Google Scholar 

  26. Rangaswamy M, Porjesz B, Chorlian DB, Wang K, Jones KA, Bauer LO, et al. Beta power in the EEG of alcoholics. Biol Psychiatry. 2002b;52:831–42.

    Article  PubMed  Google Scholar 

  27. Bauer LO. Predicting relapse to alcohol and drug abuse via quantitative electroencephalography. Neuropsychopharmacology. 2001;25:332–40.

    Article  CAS  PubMed  Google Scholar 

  28. Shen Y, Cao X, Tan T, Shan C, Wang Y, Pan J, et al. 10-Hz repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex reduces heroin cue craving in long-term addicts. Biol psychiatry. 2016;80:e13–4.

    Article  PubMed  Google Scholar 

  29. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71.

    Article  CAS  PubMed  Google Scholar 

  30. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J consulting Clin Psychol. 1988;56:893.

    Article  CAS  Google Scholar 

  31. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213.

    Article  CAS  PubMed  Google Scholar 

  32. Reise SP, Moore TM, Sabb FW, Brown AK, London ED. The Barratt Impulsiveness Scale–11: Reassessment of its structure in a community sample. Psychological Assess. 2013;25:631.

    Article  Google Scholar 

  33. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001;29:1165–88.

    Article  Google Scholar 

  34. Imperatori LS, Betta M, Cecchetti L, Canales-Johnson A, Ricciardi E, Siclari F, et al. EEG functional connectivity metrics wPLI and wSMI account for distinct types of brain functional interactions. Sci Rep. 2019;9:8894.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Toll R, Wu W, Naparstek S, Zhang Y, Narayan M, Patenaude B, et al. An electroencephalography connectomic profile of post-traumatic stress disorder. Am J Psychiatry. 2020;177:233–43.

    Article  PubMed  Google Scholar 

  36. Angarita GA, Emadi N, Hodges S, Morgan PT. Sleep abnormalities associated with alcohol, cannabis, cocaine, and opiate use: a comprehensive review. Addict Sci Clin Pr. 2016;11:9–9.

    Article  Google Scholar 

  37. Moallem NR, Courtney KE, Ray LA. The relationship between impulsivity and methamphetamine use severity in a community sample. Drug Alcohol Depend. 2018;187:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zorick T, Nestor L, Miotto K, Sugar C, Hellemann G, Scanlon G, et al. Withdrawal symptoms in abstinent methamphetamine-dependent subjects. Addiction. 2010;105:1809–18.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Guo R, Chen B, Rahman T, Cai L, Li Y, et al. Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-00921-1.

  40. Marissen MA, Franken IH, Waters AJ, Blanken P, Van Den Brink W, Hendriks VM. Attentional bias predicts heroin relapse following treatment. Addiction. 2006;101:1306–12.

    Article  PubMed  Google Scholar 

  41. Haifeng J, Wenxu Z, Hong C, Chuanwei L, Jiang D, Haiming S, et al. P300 event-related potential in abstinent methamphetamine-dependent patients. Physiol Behav. 2015;149:142–8.

    Article  PubMed  Google Scholar 

  42. Marhe R, Franken I. Error-related brain activity as a biomarker for cocaine relapse. Neuropsychopharmacology. 2014;39:241–41.

    Article  PubMed  Google Scholar 

  43. Franken IH, Stam CJ, Hendriks VM, van den Brink W. Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients. Neuropsychobiology. 2004;49:105–10.

    Article  CAS  PubMed  Google Scholar 

  44. Son KL, Choi JS, Lee J, Park SM, Lim JA, Lee JY, et al. Neurophysiological features of Internet gaming disorder and alcohol use disorder: a resting-state EEG study. Transl Psychiatry. 2015;5:e628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Winterer G, Enoch MA, White KV, Saylan M, Coppola R, Goldman D. EEG phenotype in alcoholism: increased coherence in the depressive subtype. Acta Psychiatr Scand. 2003;108:51–60.

    Article  CAS  PubMed  Google Scholar 

  46. Putman P, Hermans E, van Honk J. Emotional stroop performance for masked angry faces: it’s BAS, not BIS. Emotion. 2004;4:305.

    Article  PubMed  Google Scholar 

  47. Kim KM, Choi SW, Lee J, Kim JW. EEG correlates associated with the severity of gambling disorder and serum BDNF levels in patients with gambling disorder. J Behav Addict. 2018;7:331–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kohno M, Okita K, Morales AM, Robertson CL, Dean AC, Ghahremani DG, et al. Midbrain functional connectivity and ventral striatal dopamine D2-type receptors: link to impulsivity in methamphetamine users. Mol Psychiatry. 2016;21:1554–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. London E. Impulsivity, stimulant abuse, and dopamine receptor signaling. Adv Pharmacol. 2016;76:67–84.

    Article  CAS  PubMed  Google Scholar 

  50. Mash LE, Keehn B, Linke AC, Liu TT, Helm JL, Haist F, et al. Atypical relationships between spontaneous EEG and fMRI activity in autism. Brain Connectivity. 2020;10:18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wade EC, Iosifescu DV. Using electroencephalography for treatment guidance in major depressive disorder. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2016;1:411–22.

    Google Scholar 

  52. Jasinska AJ, Chen BT, Bonci A, Stein EA. Dorsal medial prefrontal cortex (MPFC) circuitry in rodent models of cocaine use: implications for drug addiction therapies. Addiction Biol. 2015;20:215–26.

    Article  Google Scholar 

  53. Koya E, Uejima JL, Wihbey KA, Bossert JM, Hope BT, Shaham Y. Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology. 2009;56:177–85.

    Article  CAS  PubMed  Google Scholar 

  54. Courtney KE, Schacht JP, Hutchison K, Roche DJO, Ray LA. Neural substrates of cue reactivity: association with treatment outcomes and relapse. Addiction Biol. 2016;21:3–22.

    Article  Google Scholar 

  55. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addiction Biol. 2013;18:121–33.

    Article  Google Scholar 

  56. Hanlon CA, Dowdle LT, Gibson NB, Li X, Hamilton S, Canterberry M, et al. Cortical substrates of cue-reactivity in multiple substance dependent populations: transdiagnostic relevance of the medial prefrontal cortex. Transl Psychiatry. 2018;8:186.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dom G, Sabbe B, Hulstijn W, Van Den Brink W. Substance use disorders and the orbitofrontal cortex: systematic review of behavioural decision-making and neuroimaging studies. Br J Psychiatry. 2005;187:209–20.

    Article  CAS  PubMed  Google Scholar 

  58. Geng X, Hu Y, Gu H, Salmeron BJ, Adinoff B, Stein EA, et al. Salience and default mode network dysregulation in chronic cocaine users predict treatment outcome. Brain. 2017;140:1513–24.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liang X, He Y, Salmeron BJ, Gu H, Stein EA, Yang Y. Interactions between the salience and default-mode networks are disrupted in cocaine addiction. J Neurosci. 2015;35:8081–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Su H, Liu Y, Yin D, Chen T, Li X, Zhong N, et al. Neuroplastic changes in resting-state functional connectivity after rTMS intervention for methamphetamine craving. Neuropharmacology. 2020;175:108177.

    Article  CAS  PubMed  Google Scholar 

  61. Ekhtiari H, Tavakoli H, Addolorato G, Baeken C, Bonci A, Campanella S, et al. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: a consensus paper on the present state of the science and the road ahead. Neurosci Biobehav Rev. 2019;104:118–40.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kearney-Ramos TE, Dowdle LT, Lench DH, Mithoefer OJ, Devries WH, George MS, et al. Transdiagnostic effects of ventromedial prefrontal cortex transcranial magnetic stimulation on cue reactivity. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2018;3:599–609.

    Google Scholar 

Download references

Acknowledgements

General: We thank Yavin Shaham for critical comments on a draft of the paper. We thank Qian Zhuang, Bin Zhan, Xi He, Yexi Leng, Yaowen Liang, Yan Zeng, and Na Li for helps during data collection.

Funding

NSFC grant (81822017, 32020103008, 31900765), the Science and Technology Commission of Shanghai Municipality (18JC1420302, 18JC1420304), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX05), Shanghai Sailing Program (19YF1441900), Shanghai Municipal Education Commission - Gaofeng Clinical Medicine Grant Support (20181715). We also thank the support from the Innovative Research Team of High-level Local Universities in Shanghai.

Author information

Authors and Affiliations

Authors

Contributions

TY, WL and DZ conceived and designed the study. DZ, MZ, WT, XC, LY and YL collected the data. DZ, MZ, WT, TX, WL and TY analyzed the data and wrote the paper together.

Corresponding authors

Correspondence to Wenbo Luo or Ti-Fei Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhang, M., Tian, W. et al. Neurophysiological correlate of incubation of craving in individuals with methamphetamine use disorder. Mol Psychiatry 26, 6198–6208 (2021). https://doi.org/10.1038/s41380-021-01252-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01252-5

This article is cited by

Search

Quick links