Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Application of optogenetics and in vivo imaging approaches for elucidating the neurobiology of addiction

Abstract

The neurobiology of addiction has been an intense topic of investigation for more than 50 years. Over this time, technological innovation in methods for studying brain function rapidly progressed, leading to increasingly sophisticated experimental approaches. To understand how specific brain regions, cell types, and circuits are affected by drugs of abuse and drive behaviors characteristic of addiction, it is necessary both to observe and manipulate neural activity in addiction-related behavioral paradigms. In pursuit of this goal, there have been several key technological advancements in in vivo imaging and neural circuit modulation in recent years, which have shed light on the cellular and circuit mechanisms of addiction. Here we discuss some of these key technologies, including circuit modulation with optogenetics, in vivo imaging with miniaturized single-photon microscopy (miniscope) and fiber photometry, and how the application of these technologies has garnered novel insights into the neurobiology of addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo optical tools for studying addiction neural circuitry.

Similar content being viewed by others

References

  1. Earp BD, Skorburg JA, Everett JAC, Savulescu J. Addiction, identity, morality. AJOB Empir Bioeth. 2019;10:136–53.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rise J, Halkjelsvik T. Conceptualizations of addiction and moral responsibility. Front Psychol. 2019;10:1483.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PR. The dopamine theory of addiction: 40 years of highs and lows. Nat Rev. 2015;16:305–12.

    Article  CAS  Google Scholar 

  4. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lüscher C. The emergence of a circuit model for addiction. Annu Rev Neurosci. 2016;39:257–76.

    Article  PubMed  Google Scholar 

  6. Li MD, Burmeister M. New insights into the genetics of addiction. Nat Rev Genet. 2009;10:225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ducci F, Goldman D. The genetic basis of addictive disorders. Psychiatr Clin North Am. 2012;35:495–519.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uhl GR, Drgon T, Johnson C, Li CY, Contoreggi C, Hess J, et al. Molecular genetics of addiction and related heritable phenotypes: genome-wide association approaches identify “connectivity constellation” and drug target genes with pleiotropic effects. Ann NY Acad Sci. 2008;1141:318–81.

    Article  CAS  PubMed  Google Scholar 

  9. Olds J. Self-stimulation of the brain; its use to study local effects of hunger, sex, and drugs. Science. 1958;127:315–24.

  10. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47:419–27.

    Article  CAS  PubMed  Google Scholar 

  11. Mark VH, Chato JC, Eastman FG, Aronow S, Ervin FR. Localized cooling in the brain. Science. 1961;134:1520–1.

  12. Poirier LJ, Singh P, Boucher R, Bouvier G, Olivier A, Larochelle P. Effect of brain lesions on striatal monoamines in the cat. Arch Neurol. 1967;17:601–8.

    Article  CAS  PubMed  Google Scholar 

  13. Khavari KA. Chemical microinjections into brain of free-moving small laboratory animals. Physiol Behav. 1970;5:1187–9.

    Article  CAS  PubMed  Google Scholar 

  14. Stamatakis AM, Stuber GD. Optogenetic strategies to dissect the neural circuits that underlie reward and addiction. Cold Spring Harb Perspect Med. 2012;2:a011924.

  15. Dong Y, Taylor JR, Wolf ME, Shaham Y. Circuit and synaptic plasticity mechanisms of drug relapse. J Neurosci. 2017;37:10867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saunders BT, Richard JM, Janak PH. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140210.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rodriguez-Romaguera J, Namboodiri VMK, Basiri ML, Stamatakis AM, Stuber GD. Developments from bulk optogenetics to single-cell strategies to dissect the neural circuits that underlie aberrant motivational states. Cold Spring Harb Perspect Med. 2020;a039792.

  18. Siciliano CA, Tye KM. Leveraging calcium imaging to illuminate circuit dysfunction in addiction. Alcohol 2019;74:47–63.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, DeMarco EM, Witzel LS, Keighron JD. A selected review of recent advances in the study of neuronal circuits using fiber photometry. Pharmacol Biochem Behav. 2021;201:173113.

    Article  CAS  PubMed  Google Scholar 

  20. Leopold AV, Shcherbakova DM, Verkhusha VV. Fluorescent biosensors for neurotransmission and neuromodulation: engineering and applications. Front Cell Neurosci. 2019;13:474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sabatini BL, Tian L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 2020;108:17–32.

    Article  CAS  PubMed  Google Scholar 

  22. Werner CT, Williams CJ, Fermelia MR, Lin DT, Li Y. Circuit mechanisms of neurodegenerative diseases: a new frontier with miniature fluorescence microscopy. Front Neurosci. 2019;13:1174.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boyden ES, Zhang F, Bamberg E, Nagel G. Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–8.

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci USA. 2005;102:17816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol. 2005;15:2279–84.

    Article  CAS  PubMed  Google Scholar 

  26. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K. Optogenetics in neural systems. Neuron 2011;71:9–34.

    Article  CAS  PubMed  Google Scholar 

  27. Deisseroth K, Hegemann P. The form and function of channelrhodopsin. Science. 2017;357:eaan5544.

  28. Petreanu L, Huber D, Sobczyk A, Svoboda K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci. 2007;10:663–8.

    Article  CAS  PubMed  Google Scholar 

  29. Stuber GD. Dissecting the neural circuitry of addiction and psychiatric disease with optogenetics. Neuropsychopharmacology 2010;35:341–2.

    Article  PubMed  Google Scholar 

  30. Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci. 2015;18:1230–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 2011;34:441–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang H, de Jong JW, Tak Y, Peck J, Bateup HS, Lammel S. Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 2018;97:434–49.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bocklisch C, Pascoli V, Wong JC, House DR, Yvon C, de Roo M, et al. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science. 2013;341:1521–5.

  34. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev. 2017;18:73–85.

    Article  CAS  Google Scholar 

  35. Qi J, Zhang S, Wang HL, Barker DJ, Miranda-Barrientos J, Morales M. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat Neurosci. 2016;19:725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoo JH, Zell V, Gutierrez-Reed N, Wu J, Ressler R, Shenasa MA, et al. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement. Nat Commun. 2016;7:13697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zell V, Steinkellner T, Hollon NG, Warlow SM, Souter E, Faget L, et al. VTA glutamate neuron activity drives positive reinforcement absent dopamine co-release. Neuron 2020;107:864–73.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol Rev. 2016;68:816–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev. 2016;17:351–65.

    Article  CAS  Google Scholar 

  40. Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 2008;454:118–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee BR, Ma YY, Huang YH, Wang X, Otaka M, Ishikawa M, et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci. 2013;16:1644–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma YY, Lee BR, Wang X, Guo C, Liu L, Cui R, et al. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 2014;83:1453–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.

  44. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27.

  45. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324:1080–4.

  46. Jordan CJ, Humburg B, Rice M, Bi GH, You ZB, Shaik AB, et al. The highly selective dopamine D(3)R antagonist, R-VK4-40 attenuates oxycodone reward and augments analgesia in rodents. Neuropharmacology 2019;158:107597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Galaj E, Han X, Shen H, Jordan CJ, He Y, Humburg B, et al. Dissecting the role of GABA neurons in the VTA versus SNr in opioid reward. J Neurosci. 2020;40:8853–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pascoli V, Terrier J, Hiver A, Luscher C. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 2015;88:1054–66.

    Article  CAS  PubMed  Google Scholar 

  49. Brown MT, Bellone C, Mameli M, Labouebe G, Bocklisch C, Balland B, et al. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation. PLoS ONE. 2010;5:e15870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu Y, Wienecke CF, Nachtrab G, Chen X. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 2016;530:219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wise RA, Rompre PP. Brain dopamine and reward. Annu Rev Psychol. 1989;40:191–225.

    Article  CAS  PubMed  Google Scholar 

  52. Francis TC, Yano H, Demarest TG, Shen H, Bonci A. High-frequency activation of nucleus accumbens D1-MSNs drives excitatory potentiation on D2-MSNs. Neuron 2019;103:432–44.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 2010;330:385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012;15:816–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soares-Cunha C, de Vasconcelos NAP, Coimbra B, Domingues AV, Silva JM, Loureiro-Campos E, et al. Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion (vol 25, pg 3241, 2020). Mol Psychiatry. 2020;25:3448.

    Article  CAS  PubMed  Google Scholar 

  56. Wolff SB, Olveczky BP. The promise and perils of causal circuit manipulations. Curr Opin Neurobiol. 2018;49:84–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kravitz AV, Bonci A. Optogenetics, physiology, and emotions. Front Behav Neurosci. 2013;7:169.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stefanik MT, Moussawi K, Kupchik YM, Smith KC, Miller RL, Huff ML, et al. Optogenetic inhibition of cocaine seeking in rats. Addiction Biol. 2013;18:50–3.

    Article  CAS  Google Scholar 

  59. Arguello AA, Richardson BD, Hall JL, Wang R, Hodges MA, Mitchell MP, et al. Role of a lateral orbital frontal cortex-basolateral amygdala circuit in cue-induced cocaine-seeking behavior. Neuropsychopharmacology 2017;42:727–35.

    Article  CAS  PubMed  Google Scholar 

  60. Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor EC, Luscher C. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 2014;509:459–64.

    Article  CAS  PubMed  Google Scholar 

  61. Pascoli V, Turiault M, Luscher C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour. Nature 2011;481:71–5.

    Article  PubMed  Google Scholar 

  62. Schall TA, Wright WJ, Dong Y. Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol Psychiatry. 2021;26:234–46.

    Article  PubMed  Google Scholar 

  63. Yu J, Yan Y, Li KL, Wang Y, Huang YH, Urban NN, et al. Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. Proc Natl Acad Sci USA. 2017;114:E8750–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013;499:295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Piatkevich KD, Bensussen S, Tseng HA, Shroff SN, Lopez-Huerta VG, Park D, et al. Population imaging of neural activity in awake behaving mice. Nature 2019;574:413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang W, Kim CK, Ting AY. Molecular tools for imaging and recording neuronal activity. Nat Chem Biol. 2019;15:101–10.

    Article  CAS  PubMed  Google Scholar 

  67. Seidemann E, Chen Y, Bai Y, Chen SC, Mehta P, Kajs BL, et al. Calcium imaging with genetically encoded indicators in behaving primates. Elife. 2016;5.

  68. Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi GA, Guo L, et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat Neurosci. 2016;19:1743–9.

  69. Li SJ, Vaughan A, Sturgill JF, Kepecs A. A viral receptor complementation strategy to overcome cav-2 tropism for efficient retrograde targeting of neurons. Neuron 2018;98:905–17.e5.

    Article  CAS  PubMed  Google Scholar 

  70. Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 2016;92:372–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun F, Zeng J, Jing M, Zhou J, Feng J, Owen SF, et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 2018;174:481–96.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science. 2018;360:eaat4422.

  73. Feng J, Zhang C, Lischinsky JE, Jing M, Zhou J, Wang H, et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 2019;102:745–61.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jing M, Li Y, Zeng J, Huang P, Skirzewski M, Kljakic O, et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat methods. 2020;17:1139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dong A, He K, Dudok B, Farrell J, Guan W, Liput D, et al. A fluorescent sensor for spatiotemporally resolved endocannabinoid dynamics in vitro and in vivo. bioRxiv [Preprint]. 2020. Available from: https://doi.org/10.1101/2020.10.08.329169.

  76. O’Banion CP, Yasuda R. Fluorescent sensors for neuronal signaling. Curr Opin Neurobiol. 2020;63:31–41.

    Article  PubMed  Google Scholar 

  77. Girven KS, Sparta DR. Probing deep brain circuitry: new advances in in vivo calcium measurement strategies. ACS Chem Neurosci. 2017;8:243–51.

    Article  CAS  PubMed  Google Scholar 

  78. Ghosh KK, Burns LD, Cocker ED, Nimmerjahn A, Ziv Y, Gamal AE, et al. Miniaturized integration of a fluorescence microscope. Nat Methods. 2011;8:871–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Glas A, Hübener M, Bonhoeffer T, Goltstein PM. Benchmarking miniaturized microscopy against two-photon calcium imaging using single-cell orientation tuning in mouse visual cortex. PLoS ONE. 2019;14:e0214954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ziv Y, Ghosh KK. Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents. Curr Opin Neurobiol. 2015;32:141–7.

    Article  CAS  PubMed  Google Scholar 

  81. Resendez SL, Stuber GD. In vivo calcium imaging to illuminate neurocircuit activity dynamics underlying naturalistic behavior. Neuropsychopharmacology 2015;40:238–9.

    Article  CAS  PubMed  Google Scholar 

  82. Heinsbroek JA, Bobadilla AC, Dereschewitz E, Assali A, Chalhoub RM, Cowan CW, et al. Opposing regulation of cocaine seeking by glutamate and gaba neurons in the ventral pallidum. Cell Rep. 2020;30:2018–27.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peters J, LaLumiere RT, Kalivas PW. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci. 2008;28:6046–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cameron CM, Murugan M, Choi JY, Engel EA, Witten IB. Increased cocaine motivation is associated with degraded spatial and temporal representations in IL-NAc neurons. Neuron 2019;103:80–91.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Semon RW. The Mneme. London: George Allen & Unwin; 1921.

  86. Josselyn SA, Kohler S, Frankland PW. Finding the engram. Nat Rev. 2015;16:521–34.

    Article  CAS  Google Scholar 

  87. Hebb DO. The organization of behavior: a neuropsychological theory. New York: Wiley; 1949.

  88. Wong-Riley MT. Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci. 1989;12:94–101.

    Article  CAS  PubMed  Google Scholar 

  89. Sheng M, Greenberg ME. The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 1990;4:477–85.

    Article  CAS  PubMed  Google Scholar 

  90. DeNardo L, Luo L. Genetic strategies to access activated neurons. Curr Opin Neurobiol. 2017;45:121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Whitaker LR, Hope BT. Chasing the addicted engram: identifying functional alterations in Fos-expressing neuronal ensembles that mediate drug-related learned behavior. Learn Mem (Cold Spring Harb, NY) 2018;25:455–60.

    Article  CAS  Google Scholar 

  92. Barbera G, Liang B, Zhang L, Gerfen Charles R, Culurciello E, Chen R, et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron 2016;92:202–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xia L, Nygard SK, Sobczak GG, Hourguettes NJ, Bruchas MR. Dorsal-CA1 hippocampal neuronal ensembles encode nicotine-reward contextual associations. Cell Rep. 2017;19:2143–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 1999;23:209–26.

    Article  CAS  PubMed  Google Scholar 

  95. Siciliano CA, Noamany H, Chang CJ, Brown AR, Chen X, Leible D, et al. A cortical-brainstem circuit predicts and governs compulsive alcohol drinking. Science. 2019;366:1008–12.

  96. Rubin A, Sheintuch L, Brande-Eilat N, Pinchasof O, Rechavi Y, Geva N, et al. Revealing neural correlates of behavior without behavioral measurements. Nat Commun. 2019;10:4745.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lecca S, Namboodiri VMK, Restivo L, Gervasi N, Pillolla G, Stuber GD, et al. Heterogeneous habenular neuronal ensembles during selection of defensive behaviors. Cell Rep. 2020;31:107752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aharoni D, Hoogland TM. Circuit investigations with open-source miniaturized microscopes: past, present and future. Front Cell Neurosci. 2019;13:141.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Resendez SL, Jennings JH, Ung RL, Namboodiri VMK, Zhou ZC, Otis JM, et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat Protoc. 2016;11:566–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gulati S, Cao VY, Otte S. Multi-layer cortical Ca2+ imaging in freely moving mice with prism probes and miniaturized fluorescence microscopy. J Vis Exp. 2017;124:55579.

  101. de Groot A, van den Boom BJG, van Genderen RM, Coppens J, van Veldhuijzen J, Bos J, et al. NINscope, a versatile miniscope for multi-region circuit investigations. eLife 2020;9:e49987.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kingsbury L, Huang S, Wang J, Gu K, Golshani P, Wu YE, et al. Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 2019;178:429–46.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ozbay BN, Futia GL, Ma M, Bright VM, Gopinath JT, Hughes EG, et al. Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning. Sci Rep. 2018;8:8108.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Stamatakis AM, Schachter MJ, Gulati S, Zitelli KT, Malanowski S, Tajik A, et al. Simultaneous optogenetics and cellular resolution calcium imaging during active behavior using a miniaturized microscope. Front Neurosci. 2018;12:496.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wei C, Han X, Weng D, Feng Q, Qi X, Li J, et al. Response dynamics of midbrain dopamine neurons and serotonin neurons to heroin, nicotine, cocaine, and MDMA. Cell Discov. 2018;4:60.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Calipari ES, Bagot RC, Purushothaman I, Davidson TJ, Yorgason JT, Pena CJ, et al. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci USA. 2016;113:2726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pascoli V, Hiver A, Van Zessen R, Loureiro M, Achargui R, Harada M, et al. Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature 2018;564:366–71.

    Article  CAS  PubMed  Google Scholar 

  108. Saunders BT, Richard JM, Margolis EB, Janak PH. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat Neurosci. 2018;21:1072–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Saunders A, Sabatini BL. Cre activated and inactivated recombinant adeno-associated viral vectors for neuronal anatomical tracing or activity manipulation. Curr Protoc Neurosci. 2015;72:1.24.1–1.24.15.

    Article  Google Scholar 

  110. Meng C, Zhou J, Papaneri A, Peddada T, Xu K, Cui G. Spectrally resolved fiber photometry for multi-component analysis of brain circuits. Neuron 2018;98:707–17.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 2013;494:238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Darvesh AS, Carroll RT, Geldenhuys WJ, Gudelsky GA, Klein J, Meshul CK, et al. In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery. Expert Opin drug Discov. 2011;6:109–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rodeberg NT, Sandberg SG, Johnson JA, Phillips PE, Wightman RM. Hitchhiker’s guide to voltammetry: acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem Neurosci. 2017;8:221–34.

    Article  CAS  PubMed  Google Scholar 

  114. Ou Y, Buchanan AM, Witt CE, Hashemi P. Frontiers in electrochemical sensors for neurotransmitter detection: towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal Methods. 2019;11:2738–55.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L, Pascoli V, et al. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife. 2018;7:e39945.

  116. Lefevre EM, Pisansky MT, Toddes C, Baruffaldi F, Pravetoni M, Tian L, et al. Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology 2020;45:1781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu Y, Jean-Richard-Dit-Bressel P, Yau JO, Willing A, Prasad AA, Power JM, et al. The mesolimbic dopamine activity signatures of relapse to alcohol-seeking. J Neurosci. 2020;40:6409–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Burton A, Obaid SN, Vazquez-Guardado A, Schmit MB, Stuart T, Cai L, et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc Natl Acad Sci USA. 2020;117:2835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sych Y, Chernysheva M, Sumanovski LT, Helmchen F. High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nat Methods. 2019;16:553–60.

    Article  CAS  PubMed  Google Scholar 

  120. Liberti WA, Perkins LN, Leman DP, Gardner TJ. An open source, wireless capable miniature microscope system. J Neural Eng. 2017;14:045001.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Shuman T, Aharoni D, Cai DJ, Lee CR, Chavlis S, Page-Harley L, et al. Breakdown of spatial coding and interneuron synchronization in epileptic mice. Nat Neurosci. 2020;23:229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Barbera G, Liang B, Zhang L, Li Y, Lin DT. A wireless miniScope for deep brain imaging in freely moving mice. J Neurosci Methods. 2019;323:56–60.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants F30-MH115536 (to C.R.V.) and R01-DA047269, R01-DA035217, and R01-MH121454 (to Q.-S.L.). It was also partially funded through the Research and Education Initiative Fund, a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin. C.R.V. and S.T.S. are members of the Medical Scientist Training Program at MCW, which is partially supported by a training grant from NIGMS T32-GM080202.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Casey R. Vickstrom or Qing-song Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vickstrom, C.R., Snarrenberg, S.T., Friedman, V. et al. Application of optogenetics and in vivo imaging approaches for elucidating the neurobiology of addiction. Mol Psychiatry 27, 640–651 (2022). https://doi.org/10.1038/s41380-021-01181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01181-3

This article is cited by

Search

Quick links