Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversing frontal disinhibition rescues behavioural deficits in models of CACNA1A-associated neurodevelopment disorders

Abstract

CACNA1A deletions cause epilepsy, ataxia, and a range of neurocognitive deficits, including inattention, impulsivity, intellectual deficiency and autism. To investigate the underlying mechanisms, we generated mice carrying a targeted Cacna1a deletion restricted to parvalbumin-expressing (PV) neurons (PVCre;Cacna1ac/+) or to cortical pyramidal cells (PC) (Emx1Cre;Cacna1ac/+). GABA release from PV-expressing GABAergic interneurons (PV-INs) is reduced in PVCre;Cacna1ac/+ mutants, resulting in impulsivity, cognitive rigidity and inattention. By contrast, the deletion of Cacna1a in PCs does not impact cortical excitability or behaviour in Emx1Cre;Cacna1ac/+ mutants. A targeted Cacna1a deletion in the orbitofrontal cortex (OFC) results in reversal learning deficits while a medial prefrontal cortex (mPFC) deletion impairs selective attention. These deficits can be rescued by the selective chemogenetic activation of cortical PV-INs in the OFC or mPFC of PVCre;Cacna1ac/+ mutants. Thus, Cacna1a haploinsufficiency disrupts perisomatic inhibition in frontal cortical circuits, leading to a range of potentially reversible neurocognitive deficits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neurocognitive deficits in patients with CACNA1A haploinsufficiency.
Fig. 2: Cacna1a haploinsufficiency in PV-INs reduces synaptic inhibition and leads to decreased anxiety, reversal learning deficits and selective attention deficits.
Fig. 3: Haploinsufficiency of Cacna1a in pyramidal cells does not affect excitatory synaptic transmission in the frontal cortex and does not induce apparent behavioural deficits.
Fig. 4: Selective attention deficits recapitulated by a targeted heterozygous deletion of Cacna1a in the mPFC.
Fig. 5: Cognitive rigidity recapitulated by a targeted heterozygous deletion of Cacna1a in the OFC.
Fig. 6: The chemogenetic activation of PV-INs in the mPFC or OFC respectively rescues the selective attention deficits and the reversal learning deficits in PVCre;Cacna1ac/+ mutants.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rajakulendran S, Kaski D, Hanna MG. Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat Rev Neurol. 2012;8:86–96.

    Article  CAS  PubMed  Google Scholar 

  2. Damaj L, Lupien-Meilleur A, Lortie A, Riou E, Ospina LH, Gagnon L, et al. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur J Hum Genet. 2015;23:1505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Epi KC. De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am J Hum Genet. 2016;99:287–98.

    Article  CAS  Google Scholar 

  4. Auvin S, Holder-Espinasse M, Lamblin MD, Andrieux J. Array-CGH detection of a de novo 0.7-Mb deletion in 19p13.13 including CACNA1A associated with mental retardation and epilepsy with infantile spasms. Epilepsia. 2009;50:2501–03.

    Article  PubMed  Google Scholar 

  5. Reinson K, Oiglane-Shlik E, Talvik I, Vaher U, Ounapuu A, Ennok M, et al. Biallelic CACNA1A mutations cause early onset epileptic encephalopathy with progressive cerebral, cerebellar, and optic nerve atrophy. Am J Med Genet A. 2016;170:2173–6.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang X, Raju PK, D’Avanzo N, Lachance M, Pepin J, Dubeau F, et al. Both gain-of-function and loss-of-function de novo CACNA1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome. Epilepsia. 2019;60:1881–94.

    Article  CAS  PubMed  Google Scholar 

  7. Humbertclaude V, Riant F, Krams B, Zimmermann V, Nagot N, Annequin D, et al. Cognitive impairment in children with CACNA1A mutations. Dev Med Child Neurol. 2020;62:330–7.

    Article  PubMed  Google Scholar 

  8. Catterall WA, Few AP. Calcium channel regulation and presynaptic plasticity. Neuron. 2008;59:882–901.

    Article  CAS  PubMed  Google Scholar 

  9. Jun K, Piedras-Renteria ES, Smith SM, Wheeler DB, Lee SB, Lee TG, et al. Ablation of P/Q-type Ca(2+) channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha(1A)-subunit. Proc Natl Acad Sci USA. 1999;96:15245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossignol E, Kruglikov I, van den Maagdenberg AM, Rudy B, Fishell G. CaV 2.1 ablation in cortical interneurons selectively impairs fast-spiking basket cells and causes generalized seizures. Ann Neurol. 2013;74:209–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang X, Lupien-Meilleur A, Tazerart S, Lachance M, Samarova E, Araya R, et al. Remodeled cortical inhibition prevents motor seizures in generalized epilepsy. Ann Neurol. 2018;84:436–51.

    Article  CAS  PubMed  Google Scholar 

  12. Maejima T, Wollenweber P, Teusner LU, Noebels JL, Herlitze S, Mark MD. Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. J Neurosci. 2013;33:5162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Todorov B, Kros L, Shyti R, Plak P, Haasdijk ED, Raike RS, et al. Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice. Cerebellum. 2012;11:246–58.

    Article  CAS  PubMed  Google Scholar 

  14. Mark MD, Maejima T, Kuckelsberg D, Yoo JW, Hyde RA, Shah V, et al. Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J Neurosci. 2011;31:4311–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Siegle JH, Pritchett DL, Moore CI. Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli. Nat Neurosci. 2014;17:1371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carlen M, Meletis K, Siegle JH, Cardin JA, Futai K, Vierling-Claassen D, et al. A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Mol Psychiatry. 2012;17:537–48.

    Article  CAS  PubMed  Google Scholar 

  17. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459:663–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, Lebeau FE, Bannerman DM, et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron. 2007;53:591–604.

    Article  CAS  PubMed  Google Scholar 

  19. Kim H, Ahrlund-Richter S, Wang X, Deisseroth K, Carlen M. Prefrontal parvalbumin neurons in control of attention. Cell. 2016;164:208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho KK, Hoch R, Lee AT, Patel T, Rubenstein JL, Sohal VS. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/−) mice. Neuron. 2015;85:1332–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bissonette GB, Schoenbaum G, Roesch MR, Powell EM. Interneurons are necessary for coordinated activity during reversal learning in orbitofrontal cortex. Biol Psychiatry. 2015;77:454–64.

    Article  PubMed  Google Scholar 

  22. Pi H-J, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature. 2013;503:521–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Canetta S, Bolkan S, Padilla-Coreano N, Song LJ, Sahn R, Harrison NL, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zaitsev AV, Povysheva NV, Lewis DA, Krimer LS. P/Q-type, but not N-type, calcium channels mediate GABA release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex. J Neurophysiol. 2007;97:3567–73.

    Article  CAS  PubMed  Google Scholar 

  25. Murray AJ, Woloszynowska-Fraser MU, Ansel-Bollepalli L, Cole KL, Foggetti A, Crouch B, et al. Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility. Sci Rep. 2015;5:16778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee E, Lee J, Kim E. Excitation/Inhibition imbalance in animal models of autism spectrum disorders. Biol Psychiatry. 2017;81:838–47.

    Article  PubMed  Google Scholar 

  27. Korotkova T, Fuchs EC, Ponomarenko A, von Engelhardt J, Monyer H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron. 2010;68:557–69.

    Article  CAS  PubMed  Google Scholar 

  28. Amodeo DA, Jones JH, Sweeney JA, Ragozzino ME. Differences in BTBR T+ tf/J and C57BL/6J mice on probabilistic reversal learning and stereotyped behaviors. Behav Brain Res. 2012;227:64–72.

    Article  PubMed  Google Scholar 

  29. Heisler JM, Morales J, Donegan JJ, Jett JD, Redus L, O’Connor JC. The attentional set shifting task: a measure of cognitive flexibility in mice. J Vis Exp. 2015.

  30. Bomben VC, Aiba I, Qian J, Mark MD, Herlitze S, Noebels JL. Isolated P/Q calcium channel deletion in layer vi corticothalamic neurons generates absence epilepsy. J Neurosci. 2016;36:40518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mallmann RT, Elgueta C, Sleman F, Castonguay J, Wilmes T, van den Maagdenberg A, et al. Ablation of Ca(V)2.1 voltage-gated Ca(2)(+) channels in mouse forebrain generates multiple cognitive impairments. PLoS One. 2013;8:e78598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iwasato T, Datwani A, Wolf AM, Nishiyama H, Taguchi Y, Tonegawa S, et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature. 2000;406:726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim D, Jeong H, Lee J, Ghim J-W, Her ES, Lee S-H, et al. Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory. Neuron. 2016;92:902–15.

    Article  CAS  PubMed  Google Scholar 

  34. Lak A, Costa GM, Romberg E, Koulakov AA, Mainen ZF, Kepecs A. Orbitofrontal cortex is required for optimal waiting based on decision confidence. Neuron. 2014;84:190–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM. Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci. 2008;28:11124–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bissonette GB, Bae MH, Suresh T, Jaffe DE, Powell EM. Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons. Behav Brain Res. 2013;259:143–51.

    Article  PubMed  CAS  Google Scholar 

  37. Manvich DF, Webster KA, Foster SL, Farrell MS, Ritchie JC, Porter JH, et al. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci Rep. 2018;8:3840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Indelicato E, Nachbauer W, Karner E, Eigentler A, Wagner M, Unterberger I, et al. The neuropsychiatric phenotype in CACNA1A mutations: a retrospective single center study and review of the literature. Eur J Neurol. 2019;26:66–e67.

    Article  CAS  PubMed  Google Scholar 

  39. Hamdan FF, Myers CT, Cossette P, Lemay P, Spiegelman D, Laporte AD, et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet. 2017;101:664–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fletcher CF, Lutz CM, O’Sullivan TN, Shaughnessy JD Jr., Hawkes R, Frankel WN, et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell. 1996;87:607–17.

    Article  CAS  PubMed  Google Scholar 

  41. Fletcher CF, Tottene A, Lennon VA, Wilson SM, Dubel SJ, Paylor R, et al. Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity. FASEB J. 2001;15:1288–90.

    Article  CAS  PubMed  Google Scholar 

  42. Alonso I, Marques JM, Sousa N, Sequeiros J, Olsson IA, Silveira I. Motor and cognitive deficits in the heterozygous leaner mouse, a Cav2.1 voltage-gated Ca2+ channel mutant. Neurobiol Aging. 2008;29:1733–43.

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi E, Niimi K, Itakura C. Motor coordination impairment in aged heterozygous rolling Nagoya, Cav2.1 mutant mice. Brain Res. 2009;1279:50–7.

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi E, Niimi K, Itakura C. Age-related spatial and nonspatial short-term memory in Cav2.1alpha1 mutant mice, Rolling Nagoya. Behav Brain Res. 2009;204:241–5.

    Article  CAS  PubMed  Google Scholar 

  45. Jacobi H, du Montcel ST, Bauer P, Giunti P, Cook A, Labrum R, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 2015;14:1101–8.

    Article  PubMed  Google Scholar 

  46. Jiang X, Lachance M, Rossignol E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. Prog Brain Res. 2016;226:81–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rossignol E. Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast. 2011;2011:649325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holmes GL. Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disord. 2015;17:101–16.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dutton SB, Makinson CD, Papale LA, Shankar A, Balakrishnan B, Nakazawa K, et al. Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility. Neurobiol Dis. 2012;49C:211–20.

    Google Scholar 

  50. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci. 2006;9:1142–9.

    Article  CAS  PubMed  Google Scholar 

  51. Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB, et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature. 2012;489:385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheah CS, Yu FH, Westenbroek RE, Kalume FK, Oakley JC, Potter GB, et al. Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome. Proc Natl Acad Sci USA. 2012;109:14646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468:263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, Birchmeier C, et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron. 2004;44:251–61.

    Article  CAS  PubMed  Google Scholar 

  55. Li KX, Lu YM, Xu ZH, Zhang J, Zhu JM, Zhang JM, et al. Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy. Nat Neurosci. 2012;15:267–73.

    Article  CAS  Google Scholar 

  56. Fazzari P, Paternain AV, Valiente M, Pla R, Lujan R, Lloyd K, et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature. 2010;464:1376–80.

    Article  CAS  PubMed  Google Scholar 

  57. Chen YJ, Zhang M, Yin DM, Wen L, Ting A, Wang P, et al. ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc Natl Acad Sci USA. 2010;107:21818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Woo RS, Li XM, Tao Y, Carpenter-Hyland E, Huang YZ, Weber J, et al. Neuregulin-1 enhances depolarization-induced GABA release. Neuron. 2007;54:599–610.

    Article  CAS  PubMed  Google Scholar 

  59. Wen L, Lu YS, Zhu XH, Li XM, Woo RS, Chen YJ, et al. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci USA. 2010;107:1211–16.

    Article  CAS  PubMed  Google Scholar 

  60. Del Pino I, Garcia-Frigola C, Dehorter N, Brotons-Mas JR, Alvarez-Salvado E, Martinez de Lagran M, et al. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron. 2013;79:1152–68.

    Article  PubMed  CAS  Google Scholar 

  61. Tan GH, Liu YY, Hu XL, Yin DM, Mei L, Xiong ZQ. Neuregulin 1 represses limbic epileptogenesis through ErbB4 in parvalbumin-expressing interneurons. Nat Neurosci. 2012;15:258–66.

    Article  CAS  Google Scholar 

  62. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol Psych. 2019;24:1248–57.

  64. Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P. Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci. 2003;23:622–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Levitt P, Eagleson KL, Powell EM. Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci. 2004;27:400–6.

    Article  CAS  PubMed  Google Scholar 

  66. Freund TF, Katona I. Perisomatic inhibition. Neuron. 2007;56:33–42.

    Article  CAS  PubMed  Google Scholar 

  67. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci. 2007;8:45–56.

    Article  CAS  PubMed  Google Scholar 

  68. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, et al. Gamma oscillations correlate with working memory load in humans. Cereb Cortex. 2003;13:1369–74.

    Article  PubMed  Google Scholar 

  70. Lopez-Pigozzi D, Laurent F, Brotons-Mas JR, Valderrama M, Valero M, Fernandez-Lamo I, et al. Altered oscillatory dynamics of CA1 parvalbumin basket cells during theta-gamma rhythmopathies of temporal lobe epilepsy. eNeuro. 2016;3.

  71. Llinás RR, Choi S, Urbano FJ, Shin H-S. Gamma-band deficiency and abnormal thalamocortical activity in P/Q-type channel mutant mice. Proc Natl Acad Sci USA. 2007;104:17819–24.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Roth BL. DREADDs for neuroscientists. Neuron. 2016;89:683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wechsler D. WISC-IV Administration and Scoring Manual. PsychCorp; San Antonio, TX; 2003.

  74. Wechsler D. WISC-IV Technical and Interpretative Manual. PsychCorp; San Antonio, TX; 2003.

  75. Conners CK. Conner’s Rating Scale, 3rd Edition. Toronto, Ontario; Multi-Health Systems; New York: 2008.

  76. Delis DC, Kaplan E, Kramer JH. Delis-Kaplan Executive Function System™ (D-KEFS™). Standardized test purchasable at Pearson’s; London, UK; 2001.

  77. Shallice T. Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci. 1982;298:199–209.

    Article  CAS  PubMed  Google Scholar 

  78. Manley Tea. Test of Everyday Attention for Children, The (TEA-Ch). Standardized test purchasable at Pearson’s; London, UK; 1998.

  79. Wechsler D Wechsler Memory Scale - Fourth Edition (WMS-IV). Standardized test purchasable at Pearson’s; London, UK; 2009.

  80. Beery KE, Buktenica NA, Beery NA Beery-Buktenica Developmental Test of Visual-Motor Integration, Sixth Edition, The (BEERY™ VMI). Standardized test purchasable at Pearson’s; London, UK; 2010.

  81. Instrument L Purdue Pegboard Test Manual. Standardized test purchasable at lafayette instrument; Lafayette, IN, USA; 2002.

  82. Martin NA, Brownell R EOWPVT-4: Expressive One-Word Picture Vocabulary Test–Fourth Edition. WPS; Torrance, CA; 2010.

  83. Kuhlman SJ, Huang ZJ. High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression. PLoS One. 2008;3:e2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Todorov B, van de Ven RC, Kaja S, Broos LA, Verbeek SJ, Plomp JJ, et al. Conditional inactivation of the Cacna1a gene in transgenic mice. Genesis. 2006;44:589–94.

    Article  CAS  PubMed  Google Scholar 

  85. Sousa VH, Miyoshi G, Hjerling-Leffler J, Karayannis T, Fishell G. Characterization of Nkx6-2-derived neocortical interneuron lineages. Cereb Cortex. 2009;19:i1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Haji N, Riebe I, Aguilar-Valles A, Artinian J, Laplante I, Lacaille JC. Tsc1 haploinsufficiency in Nkx2.1 cells upregulates hippocampal interneuron mTORC1 activity, impairs pyramidal cell synaptic inhibition, and alters contextual fear discrimination and spatial working memory in mice. Mol Autism. 2020;11:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Töllner K, Twele F, Löscher W. Evaluation of the pentylenetetrazole seizure threshold test in epileptic mice as surrogate model for drug testing against pharmacoresistant seizures. Epilepsy Behav. 2016;57:95–104.

    Article  PubMed  Google Scholar 

  88. Patel JC, Rossignol E, Rice ME, Machold RP. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. Nat Commun. 2012;3:1172.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and families for their dedication and support towards our work. We acknowledge Ilse Riebe for preliminary data; J. Waldron, F. Boucher, D. Carrier and the animal facility personnel for their care of animals involved in this study. A. Van den Maagdenberg (U. Leiden), S. Arber (U. Basel) and G. Fishell (NYU, USA) generously donated various mouse lines. This work was supported by the Canadian Institutes for Health Research (CIHR, Grant MOP #119553 and PJT-391422 to ER; PJT-153311 to J-CL), the Fonds de la Recherche du Québec en Santé (FRQS; Groupe de Recherche sur le Système Nerveux Central [GRSNC] group grant, and Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage [CIRCA] center grant, to J-CL). A. Lupien-Meilleur received MSc/PhD training awards from the CHU Ste-Justine Fondation des Étoiles and from the Department of Neuroscience, Université de Montréal. XJ received a post-doctoral training award from the Savoy Foundation. J-CL is the recipient of the Canada Research Chair in Cellular and Molecular Neurophysiology. ER receives a Clinician-scientist salary award from the Fonds de Recherche du Québec en Santé (FRQS) and a Young Investigator Award from the CIHR.

Author information

Authors and Affiliations

Authors

Contributions

AL-M, ER, and J-CL contributed to the conception and design of the study. AL-M, XJ, VT-D, LG, CV, and IR contributed to data acquisition and analysis. AL-M, XJ, ML, J-CL, and ER contributed to the manuscript preparation and editing. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Elsa Rossignol.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupien-Meilleur, A., Jiang, X., Lachance, M. et al. Reversing frontal disinhibition rescues behavioural deficits in models of CACNA1A-associated neurodevelopment disorders. Mol Psychiatry 26, 7225–7246 (2021). https://doi.org/10.1038/s41380-021-01175-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01175-1

Search

Quick links