Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hippocampal neurogenesis promotes preference for future rewards

Abstract

Adult hippocampal neurogenesis has been implicated in a number of disorders where reward processing is disrupted but whether new neurons regulate specific aspects of reward-related decision making remains unclear. Given the role of the hippocampus in future-oriented cognition, here we tested whether adult neurogenesis regulates preference for future, advantageous rewards in a delay discounting paradigm for rats. Indeed, blocking neurogenesis caused a profound aversion for delayed rewards, and biased choice behavior toward immediately available, but smaller, rewards. Consistent with a role for the ventral hippocampus in impulsive decision making and future-thinking, neurogenesis-deficient animals displayed reduced activity in the ventral hippocampus. In intact animals, delay-based decision making restructured dendrites and spines in adult-born neurons and specifically activated adult-born neurons in the ventral dentate gyrus, relative to dorsal activation in rats that chose between immediately-available rewards. Putative developmentally-born cells, located in the superficial granule cell layer, did not display task-specific activity. These findings identify a novel and specific role for neurogenesis in decisions about future rewards, thereby implicating newborn neurons in disorders where short-sighted gains are preferred at the expense of long-term health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neurogenesis promotes preference for delayed rewards.
Fig. 2: Effects of irradiation and running on neurogenesis and delay discounting.
Fig. 3: Loss of neurogenesis decreases Zif268-related activity in the ventral hippocampus.
Fig. 4: Delay-based decision-making increases dendritic complexity in new neurons.
Fig. 5: Delay-based decision-making restructures spines along the dorsoventral axis.
Fig. 6: Specific recruitment of adult-born neurons during delay-based decision making.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon request.

References

  1. Yun S, Reynolds RP, Masiulis I, Eisch AJ. Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis. Nat Publ Group. 2016;22:1239–47.

    CAS  Google Scholar 

  2. Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Noonan MA, Bulin SE, Fuller DC, Eisch AJ. Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J Neurosci. 2010;30:304–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deroche-Gamonet V, Revest J-M, Fiancette J-F, Balado E, Koehl M, Grosjean N, et al. Depleting adult dentate gyrus neurogenesis increases cocaine-seeking behavior. Mol Psychiatry. 2018;229:1.

    Google Scholar 

  5. Galinato MH, Takashima Y, Fannon MJ, Quach LW, Silva RJM, Mysore KK, et al. Neurogenesis during abstinence is necessary for context-driven methamphetamine-related memory. J Neurosci. 2018;38:2011. 17–14

    Article  Google Scholar 

  6. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Snyder JS, Grigereit L, Russo A, Seib DR, Brewer M, Pickel J, et al. A transgenic rat for specifically inhibiting adult neurogenesis. Eneuro. 2016;3:e0064–16. 1–13

    Article  Google Scholar 

  8. Seib DRM, Corsini NS, Ellwanger K, Plaas C, Mateos A, Pitzer C, et al. Loss of dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell. 2013;12:204–14.

    Article  CAS  PubMed  Google Scholar 

  9. Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry. 2009;14:764. 73–739

    Article  CAS  PubMed  Google Scholar 

  10. Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry. 2017;82:1–34.

    Article  Google Scholar 

  11. Egeland M, Guinaudie C, Preez AD, Musaelyan K, Zunszain PA, Fernandes C, et al. Depletion of adult neurogenesis using the chemotherapy drug temozolomide in mice induces behavioural and biological changes relevant to depression. Transl Psychiat. 2017;7:e1101–e1101.

    Article  CAS  Google Scholar 

  12. Karlsson R, Wang AS, Sonti AN, Cameron HA. Adult neurogenesis affects motivation to obtain weak, but not strong, reward in operant tasks. Hippocampus. 2018;28:512–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Treadway MT, Zald DH. Parsing Anhedonia: Translational Models of Reward-Processing Deficits in Psychopathology. Curr Directions Psychological Sci. 2013;22:244–9.

    Article  Google Scholar 

  14. Seib DR, Espinueva DF, Floresco SB, Snyder JS. A role for neurogenesis in probabilistic reward learning. Behav Neurosci. 2020;134:1–13.

    Article  Google Scholar 

  15. Bickel WK, Jarmolowicz DP, Mueller ET, Koffarnus MN, Gatchalian KM. Excessive discounting of delayed reinforcers as a trans-disease process contributing to addiction and other disease-related vulnerabilities: emerging evidence. Pharmacol Therapeutics. 2012;134:287–97.

    Article  CAS  Google Scholar 

  16. Volkow ND, Baler RD. NOW vs LATER brain circuits: implications for obesity and addiction. Trends Neurosci. 2015;38:345–52.

    Article  CAS  PubMed  Google Scholar 

  17. Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 2012;35:68–77.

    Article  CAS  PubMed  Google Scholar 

  18. Winstanley CA, Floresco SB. Deciphering decision making: variation in animal models of effort- and uncertainty-based choice reveals distinct neural circuitries underlying core cognitive processes. J Neurosci: Off J Soc Neurosci. 2016;36:12069–79.

    Article  CAS  Google Scholar 

  19. Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci. 2007;27:12176–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pfeiffer BE, Foster DJ. Hippocampal place-cell sequences depict future paths to remembered goals. Nature. 2013;497:74–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sasaki T, Piatti VC, Hwaun E, Ahmadi S, Lisman JE, Leutgeb S, et al. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons. Nat Neurosci. 2018;21:258–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kay K, Chung JE, Sosa M, Schor JS, Karlsson MP, Larkin MC, et al. Constant sub-second cycling between representations of possible futures in the hippocampus. Cell. 2020;180:1–16.

    Article  Google Scholar 

  23. Peters J, Büchel C. Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron. 2010;66:138–48.

    Article  CAS  PubMed  Google Scholar 

  24. Benoit RG, Gilbert SJ, Burgess PW. A neural mechanism mediating the impact of episodic prospection on farsighted decisions. J Neurosci. 2011;31:6771–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hassabis D, Kumaran D, Vann SD, Maguire EA. Patients with hippocampal amnesia cannot imagine new experiences. Proc Natl Acad Sci. 2007;104:1726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Race E, Keane MM, Verfaellie M. Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction. J Neurosci. 2011;31:10262–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lebreton M, Bertoux M, Boutet C, Lehericy S, Dubois B, Fossati P, et al. A critical role for the hippocampus in the valuation of imagined outcomes. PLoS Biol. 2013;11:e1001684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palombo DJ, Keane MM, Verfaellie M. The medial temporal lobes are critical for reward-based decision making under conditions that promote episodic future thinking. Hippocampus. 2015;25:345–53.

    Article  PubMed  Google Scholar 

  29. Rawlins JN, Feldon J, Butt S. The effects of delaying reward on choice preference in rats with hippocampal or selective septal lesions. Behavioural Brain Res. 1985;15:191–203.

    Article  CAS  Google Scholar 

  30. Cheung TH, Cardinal RN. Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats. BMC Neurosci. 2005;6:36.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abela AR, Chudasama Y. Dissociable contributions of the ventral hippocampus and orbitofrontal cortex to decision-making with a delayed or uncertain outcome. Eur J Neurosci. 2013;37:640–7.

    Article  PubMed  Google Scholar 

  32. Yu RQ, Cooke M, Seib DR, Zhao J, Snyder JS. Adult neurogenesis promotes efficient, nonspecific search strategies in a spatial alternation water maze task. Behav Brain Res. 2019;376:112151.

    Article  PubMed  Google Scholar 

  33. Seib DR, Chahley E, Princz-Lebel O, Snyder JS. Intact memory for local and distal cues in male and female rats that lack adult neurogenesis. PLoS One. 2018;13:e0197869–15.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Parent JM, Tada E, Fike JR, Lowenstein DH. Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci. 1999;19:4508–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030–4.

    Article  CAS  PubMed  Google Scholar 

  36. Seib D, Martin-Villalba A. In vivo neurogenesis. Bio-Protocol. 2013;3:1–8.

    Article  Google Scholar 

  37. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9:676–82.

    Article  CAS  Google Scholar 

  38. Longair MH, Baker DA, Armstrong JD. Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinforma. 2011;27:2453–4.

    Article  CAS  Google Scholar 

  39. Seib D, Martin-Villalba A. Neuronal morphology analysis. Bio-Protocol. 2013;3:1–7.

    Article  Google Scholar 

  40. Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron. 2014;83:189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schlessinger AR, Cowan WM, Gottlieb DI. An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol. 1975;159:149–75.

    Article  CAS  PubMed  Google Scholar 

  42. Ciric T, Cahill SP, Snyder JS. Dentate gyrus neurons that are born at the peak of development, but not before or after, die in adulthood. Brain Behav. 2019;9:e01435.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zeeb FD, Floresco SB, Winstanley CA. Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues. Psychopharmacology. 2010;211:87–98.

    Article  CAS  PubMed  Google Scholar 

  44. Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology. 2004;174:151–62.

    Article  CAS  PubMed  Google Scholar 

  45. Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CEL. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. Neuroimage. 2010;51:1242–52.

    Article  PubMed  Google Scholar 

  46. Jack CR, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology. 2000;55:484–90.

    Article  PubMed  Google Scholar 

  47. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 2018;559:1–22.

    Article  Google Scholar 

  48. Lehmann ML, Brachman RA, Martinowich K, Schloesser RJ, Herkenham M. Glucocorticoids orchestrate divergent effects on mood through adult neurogenesis. J Neurosci. 2013;33:2961–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shafiei N, Gray M, Viau V, Floresco SB. Acute stress induces selective alterations in cost/benefit decision-making. Neuropsychopharmacol. 2012;37:2194–209.

    Article  CAS  Google Scholar 

  50. Yang G, Pan F, Gan W-B. Stably maintained dendritic spines are associated with lifelong memories. Nature 2009;462:920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alvarez DD, Giacomini D, Yang SM, Trinchero MF, Temprana SG, Büttner KA, et al. A disynaptic feedback network activated by experience promotes the integration of new granule cells. Science. 2016;354:459–65.

    Article  CAS  PubMed  Google Scholar 

  52. Bergami M, Masserdotti G, Temprana SG, Motori E, Eriksson TM, Göbel J, et al. A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron. 2015;85:710–7.

    Article  CAS  PubMed  Google Scholar 

  53. Schloesser RJ, Lehmann M, Martinowich K, Manji HK, Herkenham M. Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry. 2010;15:1152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372–6.

    Article  CAS  PubMed  Google Scholar 

  55. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus. 2002;12:578–84.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Seo DO, Carillo MA, Lim SC-H, Tanaka KF, Drew MR. Adult Hippocampal Neurogenesis Modulates Fear Learning through Associative and Nonassociative Mechanisms. J Neurosci. 2015;35:11330–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aimone JB, Wiles J, Gage FH. Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci. 2006;9:723–7.

    Article  CAS  PubMed  Google Scholar 

  58. Buckner RL. The role of the hippocampus in prediction and imagination. Annu Rev Psychol 2010;61:27–48.

    Article  PubMed  Google Scholar 

  59. Mullally SL, Maguire EA. Memory, imagination, and predicting the future. Neuroscientist. 2014;20:220–34.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Addis DR, Wong AT, Schacter DL. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia. 2007;45:1363–77.

    Article  PubMed  Google Scholar 

  61. Ferbinteanu J, Shapiro ML. Prospective and retrospective memory coding in the hippocampus. Neuron. 2003;40:1227–39.

    Article  CAS  PubMed  Google Scholar 

  62. Wikenheiser AM, Redish AD. Hippocampal theta sequences reflect current goals. Nat Neurosci. 2015;18:289–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Masuda A, Sano C, Zhang Q, Goto H, McHugh TJ, Fujisawa S, et al. The hippocampus encodes delay and value information during delay-discounting decision making. Elife. 2020;9:e52466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zeidman P, Maguire EA. Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nat Rev Neurosci. 2016;17:173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brunec IK, Bellana B, Ozubko JD, Man V, Robin J, Liu Z-X, et al. Multiple scales of representation along the hippocampal anteroposterior axis in humans. Curr Biol. 2018;28:2129–.e6.

    Article  CAS  PubMed  Google Scholar 

  66. Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, et al. Finite scale of spatial representation in the hippocampus. Science. 2008;321:140–3.

    Article  CAS  PubMed  Google Scholar 

  67. Eichenbaum H. Prefrontal–hippocampal interactions in episodic memory. Nat Rev Neurosci. 2017;18:547–58.

    Article  CAS  PubMed  Google Scholar 

  68. Sekeres MJ, Winocur G, Moscovitch M. The hippocampus and related neocortical structures in memory transformation. Neurosci Lett. 2018;680:39–53.

    Article  CAS  PubMed  Google Scholar 

  69. Sheldon S, Levine B. The role of the hippocampus in memory and mental construction. Ann NY Acad Sci. 2016;1369:76–92.

    Article  PubMed  Google Scholar 

  70. Komorowski RW, Garcia CG, Wilson A, Hattori S, Howard MW, Eichenbaum H. Ventral hippocampal neurons are shaped by experience to represent behaviorally relevant contexts. J Neurosci. 2013;33:8079–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Riaz S, Schumacher A, Sivagurunathan S, Meer MVD, Ito R. Ventral, but not dorsal, hippocampus inactivation impairs reward memory expression and retrieval in contexts defined by proximal cues. Hippocampus. 2017;27:822–36.

    Article  CAS  PubMed  Google Scholar 

  72. Tronel S, Belnoue L, Grosjean N, Revest J-M, Piazza P-V, Koehl M, et al. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus. 2012;22:292–8.

    Article  PubMed  Google Scholar 

  73. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:466–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Niibori Y, Yu T-S, Epp JR, Akers KG, Josselyn SA, Frankland PW. Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nat Commun. 2012;3:1253.

    Article  PubMed  Google Scholar 

  75. Campbell KL, Madore KP, Benoit RG, Thakral PP, Schacter DL. Increased hippocampus to ventromedial prefrontal connectivity during the construction of episodic future events. Hippocampus. 2018;28:76–80.

    Article  PubMed  Google Scholar 

  76. Abela AR, Duan Y, Chudasama Y. Hippocampal interplay with the nucleus accumbens is critical for decisions about time. Eur J Neurosci. 2015;42:2224–33.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Floresco SB. The nucleus accumbens: an interface between cognition, emotion, and action. Annual Rev Psychol. 2014;66:25–52.

    Article  PubMed  Google Scholar 

  78. Park EH, Burghardt NS, Dvorak D, Hen R, Fenton AA. Experience-dependent regulation of dentate gyrus excitability by adult-born granule cells. J Neurosci. 2015;35:11656–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Glover LR, Schoenfeld TJ, Karlsson R-M, Bannerman DM, Cameron HA. Ongoing neurogenesis in the adult dentate gyrus mediates behavioral responses to ambiguous threat cues. PLoS Biol. 2017;15:e2001154.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Drew LJ, Kheirbek MA, Luna VM, Denny CA, Cloidt MA, Wu MV, et al. Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus. 2015;26:763–78.

    Article  Google Scholar 

  81. Burghardt NS, Park EH, Hen R, Fenton AA. Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus. 2012;22:1795–808.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Luna VM, Anacker C, Burghardt NS, Khandaker H, Andreu V, Millette A, et al. Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science. 2019;364:578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Knierim JJ, Neunuebel JP, Deshmukh SS. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Philos Trans R Soc B. 2014;369:20130369.

    Article  Google Scholar 

  84. Dolorfo CL, Amaral DG. Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol. 1998;398:25–48.

    Article  CAS  PubMed  Google Scholar 

  85. Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 2014;15:655–69.

    Article  CAS  PubMed  Google Scholar 

  86. Jahn HM, Bergami M. Critical periods regulating the circuit integration of adult-born hippocampal neurons. Cell Tissue Res. 2018;371:23–32.

    Article  PubMed  Google Scholar 

  87. Ge S, Yang C-H, Hsu K-S, Ming G-L, Song H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron. 2007;54:559–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci. 2012;15:1700–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dieni CV, Panichi R, Aimone JB, Kuo CT, Wadiche JI, Wadiche LO. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons. Nat Commun. 2016;7:11313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lemaire V, Tronel S, Montaron M-F, Fabre A, Dugast E, Abrous DN. Long-lasting plasticity of hippocampal adult-born neurons. J Neurosci. 2012;32:3101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cole JD, Espinueva D, Seib DR, Ash AM, Cooke MB, Cahill SP, et al. Adult-born hippocampal neurons undergo extended development and are morphologically distinct from neonatally-born neurons prolonged development of adult-born neurons. J Neurosci. 2020;40:5740–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Veyrac A, Gros A, Bruel-Jungerman E, Rochefort C, Borgmann FBK, Jessberger S, et al. Zif268/egr1 gene controls the selection, maturation and functional integration of adult hippocampal newborn neurons by learning. Proc Natl Acad Sci. 2013;110:7062–7.

  93. Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P, Brown A, et al. Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci. 2009;29:14484–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kee N, Teixeira CM, Wang AH, Frankland PW. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci. 2007;10:355–62.

    Article  CAS  PubMed  Google Scholar 

  95. Sun X, Bernstein MJ, Meng M, Rao S, Sørensen AT, Yao L, et al. Functionally distinct neuronal ensembles within the memory engram. Cell 2020;181:1–32.

    Article  Google Scholar 

  96. Ohline SM, Wake KL, Hawkridge M-V, Dinnunhan MF, Hegemann RU, Wilson A, et al. Adult-born dentate granule cell excitability depends on the interaction of neuron age, ontogenetic age and experience. Brain Struct Funct. 2018;383:335.

    Google Scholar 

  97. Tronel S, Lemaire V, Charrier V, Montaron M-F, Abrous DN. Influence of ontogenetic age on the role of dentate granule neurons. Brain Struct Funct. 2015;220:645–61.

    Article  PubMed  Google Scholar 

  98. Erwin SR, Sun W, Copeland M, Lindo S, Spruston N, Cembrowski MS. A sparse, spatially biased subtype of mature granule cell dominates recruitment in hippocampal-associated behaviors. Cell Rep. 2020;31:107551.

    Article  CAS  PubMed  Google Scholar 

  99. Sun D, Milibari L, Pan J-X, Ren X, Yao L-L, Zhao Y, et al. Critical roles of embryonic born dorsal dentate granule neurons for activity-dependent increases in BDNF, adult hippocampal neurogenesis, and antianxiety-like behaviors. Biol Psychiat 2021;89:600–14.

    Article  CAS  PubMed  Google Scholar 

  100. Snyder JS. Recalibrating the relevance of adult neurogenesis. Trends Neurosci. 2019;42:164–78.

    Article  CAS  PubMed  Google Scholar 

  101. Swan AA, Clutton JE, Chary PK, Cook SG, Liu GG, Drew MR. Characterization of the role of adult neurogenesis in touch-screen discrimination learning. Hippocampus. 2014;24:1581–91.

    Article  PubMed  PubMed Central  Google Scholar 

  102. McHugh SB, Campbell TG, Taylor AM, Rawlins JNP, Bannerman DM. A role for dorsal and ventral hippocampus in inter-temporal choice cost-benefit decision making. Behav Neurosci. 2008;122:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Petrik D, Lagace DC, Eisch AJ. The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology. 2012;62:21–34.

    Article  CAS  PubMed  Google Scholar 

  104. Iannitelli A, Quartini A, Tirassa P, Bersani G. Schizophrenia and neurogenesis: a stem cell approach. Neurosci Biobehav Rev. 2017;80:414–42.

    Article  PubMed  Google Scholar 

  105. Mandyam CD, Koob GF. The addicted brain craves new neurons: putative role for adult-born progenitors in promoting recovery. Trends Neurosci. 2012;35:250–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chambers RA. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depen. 2012;130:1–12.

    Article  Google Scholar 

  107. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Publ Group. 2019;108:621.

    Google Scholar 

  108. Lempert KM, Steinglass JE, Pinto A, Kable JW, Simpson HB. Can delay discounting deliver on the promise of RDoC? Psychol Med. 2019;49:190–9.

    Article  PubMed  Google Scholar 

  109. Lempert KM, Mechanic-Hamilton DJ, Xie L, Wisse LEM, Flores R, de, Wang J, et al. Neural and behavioral correlates of episodic memory are associated with temporal discounting in older adults. Neuropsychologia. 2020;146:107549.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Heerey EA, Robinson BM, McMahon RP, Gold JM. Delay discounting in schizophrenia. Cogn Neuropsychiatry. 2007;12:213–21.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Madden GJ, Petry NM, Badger GJ, Bickel WK. Impulsive and self-control choices in opioid-dependent patients and non-drug-using control participants: drug and monetary rewards. Exp Clin Psychopharm. 1997;5:256–62.

    Article  CAS  Google Scholar 

  112. Pulcu E, Trotter PD, Thomas EJ, McFarquhar M, Juhasz G, Sahakian BJ, et al. Temporal discounting in major depressive disorder. Psychological Med. 2014;44:1825–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (JSS, SBF), the Michael Smith Foundation for Health Research (JSS), a NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation (DRS) and the German Research Foundation (DRS). We thank Daniela Palombo for valuable feedback and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Snyder.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seib, D.R., Espinueva, D.F., Princz-Lebel, O. et al. Hippocampal neurogenesis promotes preference for future rewards. Mol Psychiatry 26, 6317–6335 (2021). https://doi.org/10.1038/s41380-021-01165-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01165-3

This article is cited by

Search

Quick links