Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens

Abstract

Repeated cocaine use induces coordinated changes in gene expression that drive plasticity in the nucleus accumbens (NAc), an important component of the brain’s reward circuitry, and promote the development of maladaptive, addiction-like behaviors. Studies on the molecular basis of cocaine action identify transcription factors, a class of proteins that bind to specific DNA sequences and regulate transcription, as critical mediators of this cocaine-induced plasticity. Early methods to identify and study transcription factors involved in addiction pathophysiology primarily relied on quantifying the expression of candidate genes in bulk brain tissue after chronic cocaine treatment, as well as conventional overexpression and knockdown techniques. More recently, advances in next generation sequencing, bioinformatics, cell-type-specific targeting, and locus-specific neuroepigenomic editing offer a more powerful, unbiased toolbox to identify the most important transcription factors that drive drug-induced plasticity and to causally define their downstream molecular mechanisms. Here, we synthesize the literature on transcription factors mediating cocaine action in the NAc, discuss the advancements and remaining limitations of current experimental approaches, and emphasize recent work leveraging bioinformatic tools and neuroepigenomic editing to study transcription factors involved in cocaine addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theoretical mechanisms of gene activation or suppression by transcription factors.
Fig. 2: Priming and desensitization of gene expression in NAc after prolonged withdrawal from cocaine self-administration.
Fig. 3: Intracellular signaling pathways in D1 MSNs after chronic cocaine administration.
Fig. 4: Postulated mechanisms regulating FosB gene expression after cocaine administration.

Similar content being viewed by others

References

  1. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kronman H, Richter F, Labonté B, Chandra R, Zhao S, Hoffman G, et al. Biology and bias in cell type-specific RNAseq of nucleus accumbens medium spiny neurons. Sci Rep. 2019;9:1–14.

    Article  Google Scholar 

  3. Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA, Bauman AJ, et al. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci Adv. 2020;6:eaba4221.

  4. Barrientos C, Knowland D, Wu MMJ, Lilascharoen V, Huang KW, Malenka RC, et al. Cocaine-induced structural plasticity in input regions to distinct cell types in nucleus accumbens. Biol Psychiatry. 2018;84:893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Z, Chen Z, Fan G, Li A, Yuan J, Xu T. Cell-type-specific afferent innervation of the nucleus accumbens core and shell. Front Neuroanat. 2018;12:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012;15:816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lobo MK, Covington HE, Chaudhury D, Friedman AK, Sun HS, Damez-Werno D, et al. Cell type–specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science. 2010;330:385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Soares-Cunha C, de Vasconcelos NAP, Coimbra B, Domingues AV, Silva JM, Loureiro-Campos E, et al. Nucleus accumbens medium spiny neurons subtypes signal both reward and aversion. Mol Psychiatry. 2019;25:3241–55.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cole SL, Robinson MJF, Berridge KC. Optogenetic self-stimulation in the nucleus accumbens: D1 reward versus D2 ambivalence. PLoS ONE. 2018;13:e0207694.

  10. Pardo-Garcia TR, Garcia-Keller C, Penaloza T, Richie CT, Pickel J, Hope BT, et al. Ventral pallidum is the primary target for accumbens D1 projections driving cocaine seeking. J Neurosci. 2019;39:2041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calipari ES, Bagot RC, Purushothaman I, Davidson TJ, Yorgason JT, Peña CJ, et al. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci USA. 2016;113:2726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soares-Cunha C, Coimbra B, David-Pereira A, Borges S, Pinto L, Costa P, et al. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation. Nat Commun. 2016;7:1–11.

    Article  Google Scholar 

  13. Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci. 2015;18:1230–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thibault D, Loustalot F, Fortin GM, Bourque MJ, Trudeau LÉ. Evaluation of D1 and D2 dopamine receptor segregation in the developing striatum using BAC transgenic mice. PLoS ONE. 2013;8:e67219.

  15. Lüscher C. The emergence of a circuit model for addiction. Annu Rev Neurosci. 2016;39:257–76.

    Article  PubMed  Google Scholar 

  16. Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharm Rev. 2016;68:816–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wright WJ, Dong Y. Psychostimulant-Induced adaptations in nucleus accumbens glutamatergic transmission. Cold Spring Harb Perspect Med. 2020;10:a039255.

  18. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2010;33:267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang YH, Schlüter OM, Dong Y. Silent synapses speak up: updates of the neural rejuvenation hypothesis of drug addiction. Neuroscientist. 2015;21:451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong Y, Taylor JR, Wolf ME, Shaham Y. Circuit and synaptic plasticity mechanisms of drug relapse. J Neurosci. 2017;37:10867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci. 2016;17:351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gipson CD, Kupchik YM, Kalivas PW. Rapid, transient synaptic plasticity in addiction. Neuropharmacology. 2014;76:276–86.

    Article  CAS  PubMed  Google Scholar 

  23. Nestler EJ, Lüscher C. The molecular basis of drug addiction: linking epigenetic to synaptic and circuit mechanisms. Neuron. 2019;102:48–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mews P, Walker DM, Nestler EJ. Epigenetic priming in drug addiction. Cold Spring Harb Symp Quant Biol. 2019;83:131–9.

    Article  PubMed Central  Google Scholar 

  25. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci. 2001;2:119–28.

    Article  CAS  PubMed  Google Scholar 

  26. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172:650–65.

    Article  CAS  PubMed  Google Scholar 

  27. Walker DM, Cates HM, Loh YHE, Purushothaman I, Ramakrishnan A, Cahill KM, et al. Cocaine self-administration alters transcriptome-wide responses in the Brain’s reward circuitry. Biol Psychiatry. 2018;84:867–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maze I, Covingtoni HE, Dietz DM, Laplant Q, Renthal W, Russo SJ, et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science. 2010;327:213–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim S, Shendure J. Mechanisms of interplay between transcription factors and the 3D genome. Mol Cell. 2019;76:306–19.

    Article  CAS  PubMed  Google Scholar 

  30. Stadhouders R, Filion GJ, Graf T. Transcription factors and 3D genome conformation in cell-fate decisions. Nature. 2019;569:345–54.

    Article  CAS  PubMed  Google Scholar 

  31. Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci. 2011;12:623–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mews P, Calipari ES, Day J, Lobo MK, Bredy T, Abel T. From circuits to chromatin: the emerging role of epigenetics in mental health. J Neurosci. 2021;41:873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kenny PJ. Epigenetics, microRNA, and addiction. Dialogues Clin Neurosci. 2014;16:335.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Walker DM, Nestler EJ. Neuroepigenetics and addiction. Handb Clin Neurol. 2018;148:747–65.

  35. Pierce RC, Fant B, Swinford-Jackson SE, Heller EA, Berrettini WH, Wimmer ME. Environmental, genetic and epigenetic contributions to cocaine addiction. Neuropsychopharmacology. 2018;43:1471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cates HM, Heller EA, Lardner CK, Purushothaman I, Peña CJ, Walker DM, et al. Transcription factor E2F3a in nucleus accumbens affects cocaine action via transcription and alternative splicing. Biol Psychiatry. 2018;84:167–79.

    Article  CAS  PubMed  Google Scholar 

  37. Lardner CK, Hamilton PJ, Ramakrishnan A, Kronman HG, Walker DM, Shen L, et al. Cell type-specific transcriptional patterns in nucleus accumbens differentiating cocaine versus morphine exposure: actions of ∆Fosb. Soc Neurosci Abs. 2019;415.17.

  38. Meers MP, Bryson TD, Henikoff JG, Henikoff S. Improved CUT&RUN chromatin profiling tools. Elife. 2019;8:e46314.

  39. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:21–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li Z, Schulz MH, Look T, Begemann M, Zenke M, Costa IG. Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 2019;20:1–21.

    Article  Google Scholar 

  41. Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev Genet. 2016;17:661.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Poh HM, Peh SQ, Sia YY, Li G, Mulawadi FH, et al. ChIA-PET analysis of transcriptional chromatin interactions. Methods. 2012;58:289–99.

    Article  CAS  PubMed  Google Scholar 

  44. Stadhouders R, Vidal E, Serra F, Di Stefano B, Le Dily F, Quilez J, et al. Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat Genet. 2018;50:238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McClung CA, Nestler EJ. Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nat Neurosci. 2003;6:1208–15.

    Article  CAS  PubMed  Google Scholar 

  46. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21:635–7.

    Article  CAS  PubMed  Google Scholar 

  47. Yim YY, Teague CD, Nestler EJ. In vivo locus-specific editing of the neuroepigenome. Nat Rev Neurosci. 2020;21:471–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lorsch ZS, Hamilton PJ, Ramakrishnan A, Parise EM, Salery M, Wright WJ, et al. Stress resilience is promoted by a Zfp189-driven transcriptional network in prefrontal cortex. Nat Neurosci. 2019;22:1413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hamilton PJ, Lim CJ, Nestler EJ, Heller EA. Neuroepigenetic editing. Methods Mol Biol. 2018;1767:113–36.

  50. Day JJ. New approaches to manipulating the epigenome. Dialogues Clin Neurosci. 2014;16:345.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xu SJ, Heller EA. Recent advances in neuroepigenetic editing. Curr Opin Neurobiol. 2019;59:26–33.

    Article  CAS  PubMed  Google Scholar 

  52. Lu Z, Liu Z, Mao W, Wang X, Zheng X, Chen S, et al. Locus-specific DNA methylation of Mecp2 promoter leads to autism-like phenotypes in mice. Cell Death Dis. 2020;11:1–11.

    Article  Google Scholar 

  53. Chen LF, Lin YT, Gallegos DA, Hazlett MF, Gómez-Schiavon M, Yang MG, et al. Enhancer histone acetylation modulates transcriptional bursting dynamics of neuronal activity-inducible genes. Cell Rep. 2019;26:1174–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167:233–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carlezon WA, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci. 2005;28:436–45.

    Article  CAS  PubMed  Google Scholar 

  56. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 2002;68:821–61.

    Article  Google Scholar 

  57. Briand LA, Lee BG, Lelay J, Kaestner KH, Blendy JA. Serine 133 phosphorylation is not required for hippocampal CREB-mediated transcription and behavior. Learn Mem. 2015;22:109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu X, McMurray CT. Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J Biol Chem. 2001;276:1735–41.

    Article  CAS  PubMed  Google Scholar 

  59. Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Science. 1997;278:58–63.

    Article  CAS  PubMed  Google Scholar 

  60. Carlezon WA, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N, et al. Regulation of cocaine reward by CREB. Science 1998;282:2272–5.

    Article  CAS  PubMed  Google Scholar 

  61. Larson EB, Graham DL, Arzaga RR, Buzin N, Webb J, Green TA, et al. Overexpression of CREB in the nucleus accumbens shell increases cocaine reinforcement in self-administering rats. J Neurosci. 2011;31:16447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Choi KH, Whisler K, Graham DL, Self DW. Antisense-induced reduction in nucleus accumbens cyclic AMP response element binding protein attenuates cocaine reinforcement. Neuroscience. 2006;137:372–83.

    Article  Google Scholar 

  63. Bilbao A, Rieker C, Cannella N, Parlato R, Golda S, Piechota M, et al. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects. Front Behav Neurosci. 2014;8:212.

    PubMed  PubMed Central  Google Scholar 

  64. Barrot M, Olivier JDA, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ, et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci USA. 2002;99:11435–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Edwards S, Graham DL, Bachtell RK, Self DW. Region-specific tolerance to cocaine-regulated cAMP-dependent protein phosphorylation following chronic self-administration. Eur J Neurosci. 2007;25:2201–13.

    Article  PubMed  Google Scholar 

  66. Benedetto M, D’Addario C, Candeletti S, Romualdi P. Alterations of CREB and DARPP-32 phosphorylation following cocaine and monoaminergic uptake inhibitors. Brain Res. 2007;1128:33–9.

    Article  PubMed  Google Scholar 

  67. Lee D, Bian S, Rahman A, Shim Y-B, Shim I, Choe E. Repeated cocaine administration increases N-methyl-D-aspartate NR1 subunit, extracellular signal-regulated kinase and cyclic AMP response element-binding protein phosphorylation and glutamate release in the rat dorsal striatum. Eur J Pharmacol. 2008;590:157–62.

    Article  CAS  PubMed  Google Scholar 

  68. Yin H-S, Chen K, Kalpana S, Shih JC. Differential effects of chronic amphetamine and baclofen administration on cAMP levels and phosphorylation of CREB in distinct brain regions of wild type and monoamine oxidase B-deficient mice. Synapse. 2006;60:573–84.

    Article  CAS  PubMed  Google Scholar 

  69. Shaw-Lutchman TZ, Impey S, Storm D, Nestler EJ. Regulation of CRE-mediated transcription in mouse brain by amphetamine. Synapse. 2003;48:10–7.

    Article  CAS  PubMed  Google Scholar 

  70. Olson VG, Zabetian CP, Bolanos CA, Edwards S, Barrot M, Eisch AJ, et al. Regulation of drug reward by cAMP response element-binding protein: evidence for two functionally distinct subregions of the ventral tegmental area. J Neurosci. 2005;25:5553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE, Maze I, et al. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron. 2009;62:335–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brown TE, Lee BR, Mu P, Ferguson D, Dietz D, Ohnishi YN, et al. A silent synapse-based mechanism for cocaine-induced locomotor sensitization. J Neurosci. 2011;31:8163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang YH, Lin Y, Brown TE, Han MH, Saal DB, Neve RL, et al. CREB modulates the functional output of nucleus accumbens neurons: a critical role of N-methyl-D-aspartate glutamate receptor (NMDAR) receptors. J Biol Chem. 2008;283:2751–60.

    Article  CAS  PubMed  Google Scholar 

  74. Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction. Behav Brain Res. 2015;279:240–54.

    Article  CAS  PubMed  Google Scholar 

  75. Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci. 2007;10:1029–37.

    Article  CAS  PubMed  Google Scholar 

  76. Itami C, Kimura F, Kohno T, Matsuoka M, Ichikawa M, Tsumoto T, et al. Brain-derived neurotrophic factor-dependent unmasking of “silent” synapses in the developing mouse barrel cortex. Proc Natl Acad Sci USA. 2003;100:13069–74

  77. Dong Y, Green T, Saal D, Marie H, Neve R, Nestler EJ, et al. CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci. 2006;9:475–7.

    Article  CAS  PubMed  Google Scholar 

  78. Darcq E, Kieffer BL. Opioid receptors: drivers to addiction? Nat Rev Neurosci. 2018;19:499–514.

    Article  CAS  PubMed  Google Scholar 

  79. Steiner H, Gerfen CR. Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum. J Neurosci. 1993;13:5066–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nestler EJ. Molecular mechanisms of drug addiction. Neuropharmacology. 2004;47:24–32.

    Article  CAS  PubMed  Google Scholar 

  81. Nestler EJ. Transcriptional mechanisms of addiction: role of ΔFosB. Philos Trans R Soc B Biol Sci. 2008;363:3245–55.

    Article  CAS  Google Scholar 

  82. Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, et al. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron. 1994;13:1235–44.

    Article  CAS  PubMed  Google Scholar 

  83. Perrotti LI, Weaver RR, Robison B, Renthal W, Maze I, Yazdani S, et al. Distinct patterns of ΔFosB induction in brain by drugs of abuse. Synapse. 2008;62:358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lobo MK, Zaman S, Damez-Werno DM, Koo JW, Bagot RC, DiNieri JA, et al. FosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci. 2013;33:18381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Robison AJ, Vialou V, Mazei-Robison M, Feng J, Kourrich S, Collins M, et al. Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell. J Neurosci. 2013;33:4295–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jabbour L, Cartee F, Caisee M, Haynes K. ΔFosB expression in human postmortem brain tissue from opioid overdoses. In: 47th Annual Meeting of the Society for Neurosciences. 2017.

  87. Vialou V, Feng J, Robison AJ, Ku SM, Ferguson D, Scobie KN, et al. Serum response factor and cAMP response element binding protein are both required for cocaine induction of ΔFosB. J Neurosci. 2012;32:7577–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cates HM, Lardner CK, Bagot RC, Neve RL, Nestler EJ. Fosb induction in nucleus accumbens by cocaine is regulated by E2F3a. eNeuro. 2019;6. https://doi.org/10.1523/ENEURO.0325-18.2019.

  89. Chandra R, Francis TC, Konkalmatt P, Amgalan A, Gancarz AM, Dietz DM. et al. Opposing role for Egr3 in nucleus accumbens cell subtypes in cocaine action. J Neurosci. 2015;35:7927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Damez-Werno D, LaPlant Q, Sun HS, Scobie KN, Dietz DM, Walker IM, et al. Drug experience epigenetically primes Fosb gene inducibility in rat nucleus accumbens. J Neurosci. 2012;32:10267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DEH, Truong HT, et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron. 2005;48:303–14.

    Article  CAS  PubMed  Google Scholar 

  92. Levine A. A, Guan Z, Barco A, Xu S, Kandel ER, Schwartz JH. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc Natl Acad Sci USA. 2005;102:19186–91.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang L, Lv Z, Hu Z, Sheng J, Hui B, Sun J, et al. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIα in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology. 2010;35:913–28.

    Article  CAS  PubMed  Google Scholar 

  94. Anier K, Malinovskaja K, Aonurm-Helm A, Zharkovsky A, Kalda A. DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology. 2010;35:2450–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carle TL, Ohnishi YN, Ohnishi YH, Alibhai IN, Wilkinson MB, Kumar A, et al. Proteasome-dependent and -independent mechanisms for FosB destabilization: identification of FosB degron domains and implications for ΔFosB stability. Eur J Neurosci. 2007;25:3009–19.

    Article  PubMed  Google Scholar 

  96. Ulery-Reynolds PG, Castillo MA, Vialou V, Russo SJ, Nestler EJ. Phosphorylation of ΔFosB mediates its stability in vivo. Neuroscience. 2009;158:369–72.

    Article  CAS  PubMed  Google Scholar 

  97. Zachariou V, Bolanos CA, Selley DE, Theobald D, Cassidy MP, Kelz MB, et al. An essential role for ΔFosB in the nucleus accumbens in morphine action. Nat Neurosci. 2006;9:205–11.

    Article  CAS  PubMed  Google Scholar 

  98. Kelz MB, Chen J, Carlezon WA, Whisler K, Gilden L, Beckmann AM, et al. Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature. 1999;401:272–6.

    Article  CAS  PubMed  Google Scholar 

  99. Colby CR, Whisler K, Steffen C, Nestler EJ, Self DW. Striatal cell type-specific overexpression of ΔFosB enhances incentive for cocaine. J Neurosci. 2003;23:2488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Grueter BA, Robison AJ, Neve RL, Nestler EJ, Malenka RC. FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc Natl Acad Sci USA. 2013;110:1923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Peakman MC, Colby C, Perrotti LI, Tekumalla P, Carle T, Ulery P, et al. Inducible, brain region-specific expression of a dominant negative mutant of c-Jun in transgenic mice decreases sensitivity to cocaine. Brain Res. 2003;970:73–86.

    Article  CAS  PubMed  Google Scholar 

  102. Heller EA, Cates HM, Peña CJ, Sun H, Shao N, Feng J, et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci. 2014;17:1720–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nestler EJ, Barrot M, Self DW. ΔFosB: A sustained molecular switch for addiction. Proc Natl Acad Sci USA. 2001;98:11042–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chocyk A, Czyrak A, Wedzony K. Acute and repeated cocaine induces alterations in FosB/ΔFosB expression in the paraventricular nucleus of the hypothalamus. Brain Res. 2006;1090:58–68.

  105. Gajewski PA, Eagle AL, Williams ES, Manning CE, Lynch H, McCornack C, et al. Epigenetic regulation of hippocampal fosb expression controls behavioral responses to cocaine. J Neurosci. 2019;39:8305–14.

  106. Winstanley CA, LaPlant Q, Theobald DEH, Green TA, Bachtell RK, Perrotti LI, et al. ΔFosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction. J Neurosci. 2007;27:10497–507.

  107. Winstanley CA, Bachtell RK, Theobald DEH, Laali S, Green TA, Kumar A, et al. Increased impulsivity during withdrawal from cocaine self-administration: role for ΔFosB in the orbitofrontal cortex. Cereb Cortex. 2009;19:435–44.

  108. Winstanley CA, Green TA, Theobald DEH, Renthal W, LaPlant Q, DiLeone RJ, et al. ΔFosB induction in orbitofrontal cortex potentiates locomotor sensitization despite attenuating the cognitive dysfunction caused by cocaine. Pharmacol Biochem Behav. 2009;93:278–84.

  109. Eagle AL, Gajewski PA, Yang M, Kechner ME, Al Masraf BS, Kennedy PJ, et al. Experience-dependent induction of hippocampal ΔFosB controls learning. J Neurosci. 2015;35:13773–83.

  110. Gajewski PA, Turecki G, Robison AJ. Differential expression of FosB proteins and potential target genes in select brain regions of addiction and depression patients. PLoS ONE. 2016;11:e0160355.

  111. Ferguson D, Koo JW, Feng J, Heller E, Rabkin J, Heshmati M, et al. Essential role of SIRT1 signaling in the nucleus accumbens in cocaine and morphine action. J Neurosci. 2013;33:16088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Russo SJ, Wilkinson MB, Mazei-Robison MS, Dietz DM, Maze I, Krishnan V, et al. Nuclear factor kappa B signaling regulates neuronal morphology and cocaine reward. J Neurosci. 2009;29:3529–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL, et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature. 2001;410:376–80.

    Article  CAS  PubMed  Google Scholar 

  114. Renthal W, Carle TL, Maze I, Covington HE, Truong H-T, Alibhai I, et al. FosB mediates epigenetic desensitization of the c-fos gene after chronic amphetamine exposure. J Neurosci. 2008;28:7344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yeh S-Y, Estill MS, Lardner CK, Shen L, Nestler EJ. The role of ∆FosB in the development of drug addiction: identifying ∆FosB transcriptional targets in nucleus accumbens. SfN Glob Connect. 2021.

  116. Ferguson D, Shao N, Heller E, Feng J, Neve R, Kim H-D, et al. SIRT1-FOXO3a regulate cocaine actions in the nucleus accumbens. J Neurosci. 2015;35:3100–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schall TA, Wright WJ, Dong Y. Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol Psychiatry. 2021;26:1–13.

    Article  Google Scholar 

  118. Lee JH, Ribeiro EA, Kim J, Ko B, Kronman H, Jeong YH, et al. Dopaminergic regulation of nucleus accumbens cholinergic interneurons demarcates susceptibility to cocaine addiction. Biol Psychiatry. 2020;88:746–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee J, Finkelstein J, Choi JYY, Witten IBB. Linking cholinergic interneurons, synaptic plasticity, and behavior during the extinction of a cocaine-context association. Neuron. 2016;90:1071–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ribeiro EA, Salery M, Scarpa JR, Calipari ES, Hamilton PJ, Ku SM, et al. Transcriptional and physiological adaptations in nucleus accumbens somatostatin interneurons that regulate behavioral responses to cocaine. Nat Commun. 2018;9:1–10.

    Article  Google Scholar 

  121. O’Donovan KJ, Tourtellotte WG, Milbrandt J, Baraban JM. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 1999;22:167–73.

    Article  PubMed  Google Scholar 

  122. Engeln M, Mitra S, Chandra R, Gyawali U, Fox ME, Dietz DM, et al. Sex-specific role for Egr3 in nucleus accumbens D2-medium spiny neurons following long-term abstinence from cocaine self-administration. Biol Psychiatry. 2019;87:992–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chandra R, Engeln M, Francis TC, Konkalmatt P, Patel D, Lobo MK. A role for peroxisome proliferator-activated receptor gamma coactivator-1α in nucleus accumbens neuron subtypes in cocaine action. Biol Psychiatry. 2017;81:564–72.

    Article  CAS  PubMed  Google Scholar 

  124. Anderson EM, Larson EB, Guzman D, Wissman AM, Neve RL, Nestler EJ, et al. Overexpression of the histone dimethyltransferase G9a in nucleus accumbens shell increases cocaine self-administration, stress-induced reinstatement, and anxiety. J Neurosci. 2018;38:803–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Anderson EM, Sun H, Guzman D, Taniguchi M, Cowan CW, Maze I, et al. Knockdown of the histone di-methyltransferase G9a in nucleus accumbens shell decreases cocaine self-administration, stress-induced reinstatement, and anxiety. Neuropsychopharmacology. 2019;44:1370–6.

    Article  CAS  PubMed  Google Scholar 

  126. Laplant Q, Vialou V, Covington HE, Dumitriu D, Feng J, Warren BL, et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci. 2010;13:1137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cannella N, Oliveira AMM, Hemstedt T, Lissek T, Buechler E, Bading H, et al. Dnmt3a2 in the nucleus accumbens shell is required for reinstatement of cocaine seeking. J Neurosci. 2018;38:7516–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cole S, Chandra R, Harris M, Patel I, Wang T, Kim H, et al. Cocaine-induced neuron subtype mitochondrial dynamics through Egr3 transcriptional regulation. bioRxiv. 2020. https://www.biorxiv.org/content/10.1101/2020.06.27.175349v1.

  129. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1:a000034.

  130. Boersma MCH, Dresselhaus EC, De Biase LM, Mihalas AB, Bergles DE, Meffert MK. A requirement for nuclear factor- B in developmental and plasticity-associated synaptogenesis. J Neurosci. 2011;31:5414–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gutierrez H, Davies AM. Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci. 2011;34:316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ang E, Chen J, Zagouras P, Magna H, Holland J, Schaeffer E, et al. Induction of nuclear factor-κB in nucleus accumbens by chronic cocaine administration. J Neurochem. 2001;79:221–4.

    Article  CAS  PubMed  Google Scholar 

  133. Wang Y, Teng H, Sapozhnikov DM, Du Q, Zhao M. Transcriptome sequencing reveals candidate NF-κB target genes involved in repeated cocaine administration. Int J Neuropsychopharmacol. 2018;21:697–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron. 2019;101:207–23.

    Article  CAS  PubMed  Google Scholar 

  135. Pulipparacharuvil S, Renthal W, Hale CF, Taniguchi M, Xiao G, Kumar A, et al. Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron. 2008;59:621–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science. 1999;286:785–90.

    Article  CAS  PubMed  Google Scholar 

  137. Flavell SW, Cowan CW, Kim TK, Greer PL, Lin Y, Paradis S, et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science. 2006;311:1008–12.

    Article  CAS  PubMed  Google Scholar 

  138. Flavell SW, Kim TK, Gray JM, Harmin DA, Hemberg M, Hong EJ, et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron. 2008;60:1022–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Norrholm SD, Bibb JA, Nestler EJ, Ouimet CC, Taylor JR, Greengard P. Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience. 2003;116:19–22.

    Article  CAS  PubMed  Google Scholar 

  140. Benavides DR, Quinn JJ, Zhong P, Hawasli AH, DiLeone RJ, Kansy JW, et al. Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability. J Neurosci. 2007;27:12967–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Taylor JR, Lynch WJ, Sanchez H, Olausson P, Nestler EJ, Bibb JA. Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine. Proc Natl Acad Sci USA. 2007;104:4147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

  143. Song WM, Zhang B. Multiscale embedded gene co-expression network analysis. PLoS Comput Biol. 2015;11:e1004574.

  144. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:1–13.

    Article  Google Scholar 

  145. Wang Q, Zhang Y, Wang M, Song WM, Shen Q, McKenzie A, et al. The landscape of multiscale transcriptomic networks and key regulators in Parkinson’s disease. Nat Commun. 2019;10:1–15.

    Google Scholar 

  146. Neff RA, Wang M, Vatansever S, Guo L, Ming C, Wang Q, et al. Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets. Sci Adv. 2021;7:eabb5398.

  147. Wang M, Li A, Sekiya M, Beckmann ND, Quan X, Schrode N, et al. Transformative network modeling of multi-omics data reveals detailed circuits, key regulators, and potential therapeutics for Alzheimer’s disease. Neuron. 2021;109:257–72.

    Article  CAS  PubMed  Google Scholar 

  148. Bagot RCC, Cates HMM, Purushothaman I, Lorsch ZSS, Walker DMM, Wang J, et al. Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility. Neuron. 2016;90:969–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. Sex-specific transcriptional signatures in human depression. Nat Med. 2017;23:1102–11.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Teague CD, Zhou X, Walker D, Holt L, Zhang B, Nestler E. Phosphodiesterase 1b is an upstream regulator of a key gene network in the nucleus accumbens driving addiction-like behaviors. In: Virtual NIDA Genetics and Epigenetics Consortium Meeting. 2021.

  151. Hoekman MFM, Jacobs FMJ, Smidt MP, Burbach JPH. Spatial and temporal expression of FoxO transcription factors in the developing and adult murine brain. Gene Expr Patterns. 2006;6:134–40.

    Article  CAS  PubMed  Google Scholar 

  152. Feng J, Wilkinson M, Liu X, Purushothaman I, Ferguson D, Vialou V, et al. Chronic cocaine-regulated epigenomic changes in mouse nucleus accumbens. Genome Biol. 2014;15:1–18.

    Article  CAS  Google Scholar 

  153. Julian LM, Vandenbosch R, Pakenham CA, Andrusiak MG, Nguyen AP, McClellan KA, et al. Opposing regulation of Sox2 by cell-cycle effectors E2f3a and E2f3b in neural stem cells. Cell Stem Cell. 2013;12:440–52.

    Article  CAS  PubMed  Google Scholar 

  154. Cates HM, Bagot RC, Heller EA, Purushothaman I, Lardner CK, Walker DM, et al. A novel role for E2F3b in regulating cocaine action in the prefrontal cortex. Neuropsychopharmacology. 2019;44:776–84.

    Article  PubMed  Google Scholar 

  155. Godino A, Salery M, Futamura R, Browne C, Martinez-Rivera F, Hamilton P, et al. Retinoic x receptor alpha signaling in the nucleus accumbens contributes to cocaine- and opioid-induced transcriptional and behavioral alterations. Soc Neurosci. 2019.

  156. Carpenter MD, Hu Q, Bond AM, Lombroso SI, Czarnecki KS, Lim CJ, et al. Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes. Nat Commun. 2020;11:1–14.

    Article  Google Scholar 

  157. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinediones as antidiabetic agents: a critical review. Bioorganic Chem. 2018;77:548–67.

  158. Aikawa Y, Morimoto K, Yamamoto T, Chaki H, Hashiramoto A, Narita H, et al. Treatment of arthritis with a selective inhibitor of c-Fos/activator protein-1. Nat Biotechnol. 2008;26:817–23.

  159. Kamide D, Yamashita T, Araki K, Tomifuji M, Tanaka Y, Tanaka S, et al. Selective activator protein-1 inhibitor T-5224 prevents lymph node metastasis in an oral cancer model. Cancer Sci. 2016;107:666–73.

  160. Makino H, Seki S, Yahara Y, Shiozawa S, Aikawa Y, Motomura H, et al. A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain. Sci Rep. 2017;7:16983.

  161. Nestler EJ. ∆FosB: A transcriptional regulator of stress and antidepressant responses. Eur J Pharmacol. 2015;753:66–72.

  162. Wallace DL, Vialou V, Rios L, Carle-Florence TL, Chakravarty S, Kumar A, et al. The influence of ΔFosB in the nucleus accumbens on natural reward-related behavior. J Neurosci. 2008;28:10272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, et al. Overexpression of ΔFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med. 2000;6:985–90.

  164. Li Y, Liu Z, Aglyamova G, Chen J, Chen H, Bhandari M, et al. Discovery of phenanthridine analogues as novel chemical probes disrupting the binding of DNA to ΔFosB homodimers and ΔFosB/JunD heterodimers. Bioorganic Med Chem Lett. 2020;30:127300.

  165. Wang Y, Cesena TI, Ohnishi Y, Burger-Caplan R, Lam V, Kirchhoff PD, et al. Small molecule screening identifies regulators of the transcription factor ΔfosB. ACS Chem Neurosci. 2012;3:546–556.

  166. Venniro M, Banks ML, Heilig M, Epstein DH, Shaham Y. Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci. 2020;21:625–43.

    Article  CAS  PubMed  Google Scholar 

  167. Heller EA, Hamilton PJ, Burek DD, Lombroso SI, Peña CJ, Neve RL, et al. Targeted epigenetic remodeling of the cdk5 gene in nucleus accumbens regulates cocaine- and stress-evoked behavior. J Neurosci. 2016;36:4690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hamilton PJ, Burek DJ, Lombroso SI, Neve RL, Robison AJ, Nestler EJ, et al. Cell-type-specific epigenetic editing at the fosb gene controls susceptibility to social defeat stress. Neuropsychopharmacology. 2018;32:272–84.

    Article  Google Scholar 

  169. Aleyasin H, Flanigan ME, Golden SA, Takahashi A, Menard C, Pfau ML, et al. Cell-type-specific role of Δfosb in nucleus accumbens in modulating intermale aggression. J Neurosci. 2018;38:5913–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kronman H, Torres-Berrio A, Sidoli S, Issler O, Godino A, Ramakrishnan A, et al. Long-term behavioral and cell type-specific molecular effects of early life stress are mediated by H3K79me2 dynamics in medium spiny neurons. Nat Neurosci. 2021;24:667–76.

  171. Nectow AR, Nestler EJ. Viral tools for neuroscience. Nat Rev Neurosci. 2020;21:669–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Several figures in this review were created using Biorender.com

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Nestler.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teague, C.D., Nestler, E.J. Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens. Mol Psychiatry 27, 687–709 (2022). https://doi.org/10.1038/s41380-021-01163-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01163-5

Search

Quick links