Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CADPS functional mutations in patients with bipolar disorder increase the sensitivity to stress

Abstract

Bipolar disorder is a severe and chronic psychiatric disease resulting from a combination of genetic and environmental risk factors. Here, we identified a significant higher mutation rate in a gene encoding the calcium-dependent activator protein for secretion (CADPS) in 132 individuals with bipolar disorder, when compared to 184 unaffected controls or to 21,070 non-psychiatric and non-Finnish European subjects from the Exome Aggregation Consortium. We found that most of these variants resulted either in a lower abundance or a partial impairment in one of the basic functions of CADPS in regulating neuronal exocytosis, synaptic plasticity and vesicular transporter-dependent uptake of catecholamines. Heterozygous mutant mice for Cadps+/− revealed that a decreased level of CADPS leads to manic-like behaviours, changes in BDNF level and a hypersensitivity to stress. This was consistent with more childhood trauma reported in families with mutation in CADPS, and more specifically in mutated individuals. Furthermore, hyperactivity observed in mutant animals was rescued by the mood-stabilizing drug lithium. Overall, our results suggest that dysfunction in calcium-dependent vesicular exocytosis may increase the sensitivity to environmental stressors enhancing the risk of developing bipolar disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic exploration of CADPS in patients with BD.
Fig. 2: Characterization of missense variants identified in CADPS.
Fig. 3: Mutations in CADPS decreased the FFN511 release and monoamine uptake.
Fig. 4: Cultured neurons expressing CADPSp.I148_E185del or CADPSp.S399L exhibit altered short-term plasticity characteristics.
Fig. 5: Heterozygous mutant mice for CADPS display manic-like behaviours and a higher sensitivity to stress.
Fig. 6: Assessment of childhood trauma in families with mutations in CADPS, 355 independent patients with BD and 86 unaffected controls.

Similar content being viewed by others

References

  1. Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RM, Petukhova M, et al. Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen psychiatry. 2007;64:543–52.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kieseppa T, Partonen T, Haukka J, Kaprio J, Lonnqvist J. High concordance of bipolar I disorder in a nationwide sample of twins. Am J psychiatry. 2004;161:1814–21.

    Article  PubMed  Google Scholar 

  3. Mathieu F, Dizier MH, Etain B, Jamain S, Rietschel M, Maier W, et al. European collaborative study of early-onset bipolar disorder: evidence for genetic heterogeneity on 2q14 according to age at onset. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:1425–33.

    Article  PubMed  Google Scholar 

  4. Lopez de Lara C, Jaitovich-Groisman I, Cruceanu C, Mamdani F, Lebel V, Yerko V, et al. Implication of synapse-related genes in bipolar disorder by linkage and gene expression analyses. Int J Neuropsychopharmacol. 2010;13:1397–410.

    Article  PubMed  CAS  Google Scholar 

  5. Etain B, Mathieu F, Rietschel M, Maier W, Albus M, McKeon P, et al. Genome-wide scan for genes involved in bipolar affective disorder in 70 European families ascertained through a bipolar type I early-onset proband: supportive evidence for linkage at 3p14. Mol psychiatry. 2006;11:685–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Breen G, Lewis CM, Vassos E, Pergadia ML, Blackwood DH, Boomsma DI, et al. Replication of association of 3p21.1 with susceptibility to bipolar disorder but not major depression. Nat Genet. 2011;43:3–5. Author reply 5

    Article  CAS  PubMed  Google Scholar 

  7. Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR, Steele CJ, et al. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol psychiatry. 2013;18:195–205.

    Article  CAS  PubMed  Google Scholar 

  8. McMahon FJ, Akula N, Schulze TG, Muglia P, Tozzi F, Detera-Wadleigh SD, et al. Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nat Genet. 2010;42:128–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Psychiatric GCBDWG. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 2011;43:977–83.

    Article  CAS  Google Scholar 

  10. Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, Upmanyu R, et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci U.S.A. 2009;106:7501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He K, Wang Q, Chen J, Li T, Li Z, Li W, et al. ITIH family genes confer risk to schizophrenia and major depressive disorder in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry. 2014;51:34–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ament SA, Szelinger S, Glusman G, Ashworth J, Hou L, Akula N, et al. Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci U.S.A. 2015;112:3576–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Muller D, et al. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J Neural Transm. 2016;123:867–83.

    Article  CAS  PubMed  Google Scholar 

  14. Etain B, Dumaine A, Mathieu F, Chevalier F, Henry C, Kahn JP, et al. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry. 2010;15:748–55.

    Article  CAS  PubMed  Google Scholar 

  15. Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet. 2008;40:1056–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Speidel D, Varoqueaux F, Enk C, Nojiri M, Grishanin RN, Martin TF, et al. A family of Ca2+-dependent activator proteins for secretion: comparative analysis of structure, expression, localization, and function. J Biol Chem. 2003;278:52802–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ann K, Kowalchyk JA, Loyet KM, Martin TF. Novel Ca2+-binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. J Biol Chem. 1997;272:19637–40.

    Article  CAS  PubMed  Google Scholar 

  19. Jockusch WJ, Speidel D, Sigler A, Sorensen JB, Varoqueaux F, Rhee JS, et al. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell. 2007;131:796–808.

    Article  CAS  PubMed  Google Scholar 

  20. Kabachinski G, Kielar-Grevstad DM, Zhang X, James DJ, Martin TF. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion. Mol Biol Cell. 2016;27:654–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Speidel D, Bruederle CE, Enk C, Voets T, Varoqueaux F, Reim K, et al. CAPS1 regulates catecholamine loading of large dense-core vesicles. Neuron. 2005;46:75–88.

    Article  CAS  PubMed  Google Scholar 

  22. Brunk I, Blex C, Speidel D, Brose N, Ahnert-Hilger G. Ca2+-dependent activator proteins of secretion promote vesicular monoamine uptake. J Biol Chem. 2009;284:1050–6.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Schirra C, Stevens DR, Matti U, Speidel D, Hof D, et al. CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles. J Neurosci. 2008;28:5594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hattori K, Tanaka H, Wakabayashi C, Yamamoto N, Uchiyama H, Teraishi T, et al. Expression of Ca(2)(+)-dependent activator protein for secretion 2 is increased in the brains of schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:1738–43.

    Article  CAS  PubMed  Google Scholar 

  25. Palo OM, Soronen P, Silander K, Varilo T, Tuononen K, Kieseppa T, et al. Identification of susceptibility loci at 7q31 and 9p13 for bipolar disorder in an isolated population. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:723–35.

    CAS  PubMed  Google Scholar 

  26. Sadakata T, Washida M, Iwayama Y, Shoji S, Sato Y, Ohkura T, et al. Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J Clin Investig. 2007;117:931–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daily NJ, Boswell KL, James DJ, Martin TF. Novel interactions of CAPS (Ca2+-dependent activator protein for secretion) with the three neuronal SNARE proteins required for vesicle fusion. J Biol Chem. 2010;285:35320–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J. Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport. 2001;12:3257–62.

    Article  CAS  PubMed  Google Scholar 

  29. Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B. Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord. 2006;8:133–43.

    Article  CAS  PubMed  Google Scholar 

  30. Jamain S, Cichon S, Etain B, Muhleisen TW, Georgi A, Zidane N, et al. Common and rare variant analysis in early-onset bipolar disorder vulnerability. PloS ONE. 2014;9:e104326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bernstein DP, Fink L, Handelsman L, Foote J, Lovejoy M, Wenzel K, et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am J psychiatry. 1994;151:1132–6.

    Article  CAS  PubMed  Google Scholar 

  32. Paquette D, Laporte L, Bigras M, Zoccolillo M. Validation of the French version of the CTQ and prevalence of the history of maltreatment. Sante Ment au Que. 2004;29:201–20.

    Article  Google Scholar 

  33. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gubernator NG, Zhang H, Staal RG, Mosharov EV, Pereira DB, Yue M, et al. Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science. 2009;324:1441–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brunk I, Blex C, Rachakonda S, Holtje M, Winter S, Pahner I, et al. The first luminal domain of vesicular monoamine transporters mediates G-protein-dependent regulation of transmitter uptake. J Biol Chem. 2006;281:33373–85.

    Article  CAS  PubMed  Google Scholar 

  36. Grishanin RN, Klenchin VA, Loyet KM, Kowalchyk JA, Ann K, Martin TF. Membrane association domains in Ca2+-dependent activator protein for secretion mediate plasma membrane and dense-core vesicle binding required for Ca2+-dependent exocytosis. The. J Biol Chem. 2002;277:22025–34.

    Article  CAS  PubMed  Google Scholar 

  37. Khodthong C, Kabachinski G, James DJ, Martin TF. Munc13 homology domain-1 in CAPS/UNC31 mediates SNARE binding required for priming vesicle exocytosis. Cell Metab. 2011;14:254–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nojiri M, Loyet KM, Klenchin VA, Kabachinski G, Martin TF. CAPS activity in priming vesicle exocytosis requires CK2 phosphorylation. J Biol Chem. 2009;284:18707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Petrie M, Esquibel J, Kabachinski G, Maciuba S, Takahashi H, Edwardson JM, et al. The vesicle priming factor CAPS functions as a homodimer via C2 domain interactions to promote regulated vesicle exocytosis. J Biol Chem. 2016;291:21257–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aas M, Henry C, Andreassen OA, Bellivier F, Melle I, Etain B. The role of childhood trauma in bipolar disorders. Int J bipolar Disord. 2016;4:2.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Etain B, Henry C, Bellivier F, Mathieu F, Leboyer M. Beyond genetics: childhood affective trauma in bipolar disorder. Bipolar Disord. 2008;10:867–76.

    Article  PubMed  Google Scholar 

  42. Sadakata T, Washida M, Morita N, Furuichi T. Tissue distribution of Ca2+-dependent activator protein for secretion family members CAPS1 and CAPS2 in mice. J Histochemistry Cytochemistry. 2007;55:301–11.

    Article  CAS  Google Scholar 

  43. Walent JH, Porter BW, Martin TF. A novel 145 kd brain cytosolic protein reconstitutes Ca(2+)-regulated secretion in permeable neuroendocrine cells. Cell. 1992;70:765–75.

    Article  CAS  PubMed  Google Scholar 

  44. Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64:238–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grigoroiu-Serbanescu M, Martinez M, Nothen MM, Grinberg M, Sima D, Propping P, et al. Different familial transmission patterns in bipolar I disorder with onset before and after age 25. Am J Med Genet. 2001;105:765–73.

    Article  CAS  PubMed  Google Scholar 

  46. Leboyer M, Bellivier F, McKeon P, Albus M, Borrman M, Perez-Diaz F, et al. Age at onset and gender resemblance in bipolar siblings. Psychiatry Res. 1998;81:125–31.

    Article  CAS  PubMed  Google Scholar 

  47. Leboyer M, Henry C, Paillere-Martinot ML, Bellivier F. Age at onset in bipolar affective disorders: a review. Bipolar Disord. 2005;7:111–8.

    Article  PubMed  Google Scholar 

  48. Lin PI, McInnis MG, Potash JB, Willour V, MacKinnon DF, DePaulo JR, et al. Clinical correlates and familial aggregation of age at onset in bipolar disorder. Am J psychiatry. 2006;163:240–6.

    Article  PubMed  Google Scholar 

  49. O’Mahony E, Corvin A, O’Connell R, Comerford C, Larsen B, Jones R, et al. Sibling pairs with affective disorders: resemblance of demographic and clinical features. Psychological Med. 2002;32:55–61.

    Article  Google Scholar 

  50. Schurhoff F, Bellivier F, Jouvent R, Mouren-Simeoni MC, Bouvard M, Allilaire JF, et al. Early and late onset bipolar disorders: two different forms of manic-depressive illness? J Affect Disord. 2000;58:215–21.

    Article  CAS  PubMed  Google Scholar 

  51. Kennedy KP, Cullen KR, DeYoung CG, Klimes-Dougan B. The genetics of early-onset bipolar disorder: a systematic review. J Affect Disord. 2015;184:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen HM, DeLong CJ, Bame M, Rajapakse I, Herron TJ, McInnis MG, et al. Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients. Transl psychiatry. 2014;4:e375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang JL, Shamah SM, Sun AX, Waldman ID, Haggarty SJ, Perlis RH. Label-free, live optical imaging of reprogrammed bipolar disorder patient-derived cells reveals a functional correlate of lithium responsiveness. Transl psychiatry. 2014;4:e428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Machado-Vieira R, Soeiro-De-Souza MG, Richards EM, Teixeira AL, Zarate CA Jr. Multiple levels of impaired neural plasticity and cellular resilience in bipolar disorder: developing treatments using an integrated translational approach. World J Biol Psychiatry. 2014;15:84–95.

    Article  PubMed  Google Scholar 

  55. Anand A, Koller DL, Lawson WB, Gershon ES, Nurnberger JI, Bi GSC. Genetic and childhood trauma interaction effect on age of onset in bipolar disorder: an exploratory analysis. J Affect Disord. 2015;179:1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Viswanath B, Jose SP, Squassina A, Thirthalli J, Purushottam M, Mukherjee O, et al. Cellular models to study bipolar disorder: a systematic review. J Affect Disord. 2015;184:36–50.

    Article  PubMed  Google Scholar 

  57. Renden R, Berwin B, Davis W, Ann K, Chin CT, Kreber R, et al. Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion. Neuron. 2001;31:421–37.

    Article  CAS  PubMed  Google Scholar 

  58. Manji HK, Quiroz JA, Payne JL, Singh J, Lopes BP, Viegas JS, et al. The underlying neurobiology of bipolar disorder. World Psychiatry. 2003;2:136–46.

    PubMed  PubMed Central  Google Scholar 

  59. Cannon M, Clarke MC, Cotter DR. Priming the brain for psychosis: maternal inflammation during fetal development and the risk of later psychiatric disorder. Am J Psychiatry. 2014;171:901–5.

    Article  PubMed  Google Scholar 

  60. Haussleiter IS, Neumann E, Lorek S, Ueberberg B, Juckel G. Role of child maltreatment and gender for bipolar symptoms in young adults. Int J Bipolar Disord. 2020;8:10.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang S, Lin X, Yang T, Zhang S, Pan Y, Lu J, et al. Prevalence of childhood trauma among adults with affective disorder using the Childhood Trauma Questionnaire: a meta-analysis. J Affect Disord. 2020;276:546–54.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Investissements d’Avenir program managed by the Agence Nationale pour la Recherche (ANR) under reference ANR-11-IDEX-0004-02 (Labex BioPsy). This work also received financial support from the Institut National pour la Santé et la Recherche Médicale (Inserm), the Réseau Thématique de Recherche et de Soins en Santé Mentale (Fondation FondaMental®, Prix Marcel Dassault to SJ), the Domaine d’Intérêt Majeur (DIM) Cerveau et Pensée (to JS) and the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM119158 (to TFJM). The Jamain team is affiliated with the Paris School of Neuroscience (ENP) and the Bio-Psy Laboratory of Excellence. D.N. was supported by a Boehringer Ingelheim Fonds PhD fellowship. We are very grateful to patients with bipolar disorder, their family and control subjects for their participation. We acknowledge Prof. Gudrun Ahnert-Hilger for CHOVMAT1 cells and Dr. R. Toro for the SniPeep software. We thank E. Abadie, the Cochin Hospital cell library (Prof. J. Chelly), the Clinical Investigation Centre and the Biological Resources Platform of Mondor Hospital for technical assistance. We also thank Anja Günther for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

SJ designed the study, with the help of JR and DN for electrophysiological experiments, CK and MNB for mouse behavioural analyses and TFJM for CADPS in vitro analysis; SJ, JS, CK, AN, AH and EC generated genetic data and conducted genetic analyses; JS, NP, AH, VL, RT, SM and TFJM performed biochemical experiments; CK, GG and MNB conducted behavioural analyses in mice; DN and JR performed electrophysiological experiments on hippocampal mouse neurons; CH, BE and ML designed, collected and analysed clinical data, with the help of CB and PLC who collected biological samples in patients and controls; SJ, JS, DN, CK, BE, MNB and TFJM wrote the article.

Corresponding author

Correspondence to Stéphane Jamain.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitbon, J., Nestvogel, D., Kappeler, C. et al. CADPS functional mutations in patients with bipolar disorder increase the sensitivity to stress. Mol Psychiatry 27, 1145–1157 (2022). https://doi.org/10.1038/s41380-021-01151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01151-9

Search

Quick links