Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allele-specific DNA methylation maps in monozygotic twins discordant for psychiatric disorders reveal that disease-associated switching at the EIPR1 regulatory loci modulates neural function

Abstract

The non-Mendelian features of phenotypic variations within monozygotic twins are likely complicated by environmental modifiers of genetic effects that have yet to be elucidated. Here, we performed methylome and genome analyses of blood DNA from psychiatric disorder-discordant monozygotic twins to study how allele-specific methylation (ASM) mediates phenotypic variations. We identified that thousands of genetic variants with ASM imbalances exhibit phenotypic variation-associated switching at regulatory loci. These ASMs have plausible causal associations with psychiatric disorders through effects on interactions between transcription factors, DNA methylations, and other epigenomic markers and then contribute to dysregulated gene expression, which eventually increases disease susceptibility. Moreover, we also experimentally validated the model that the rs4854158 alternative C allele at an ASM switching regulatory locus of EIPR1 encoding endosome-associated recycling protein-interacting protein 1, is associated with demethylation and higher RNA expression and shows lower TF binding affinities in unaffected controls. An epigenetic ASM switching induces C allele hypermethylation and then recruits repressive Polycomb repressive complex 2 (PRC2), reinforces trimethylation of lysine 27 on histone 3 and inhibits its transcriptional activity, thus leading to downregulation of EIPR1 in schizophrenia. Moreover, disruption of rs4854158 induces gain of EIPR1 function and promotes neural development and vesicle trafficking. Our study provides a powerful framework for identifying regulatory risk variants and contributes to our understanding of the interplay between genetic and epigenetic variants in mediating psychiatric disorder susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic describing the method of detecting ASM in MZ twin pairs.
Fig. 2: Characteristics of psyASM genes.
Fig. 3: ASM switching-mediated EIPR1 downregulation in schizophrenia.
Fig. 4: Competitive binding of the repressive TFs at a psyASM switching regulatory locus induced dysregulated EIPR1 expression.
Fig. 5: EIPR1 gain of function promotes neural development and vesicle trafficking.

Similar content being viewed by others

References

  1. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet. 2009;373:234–9.

    CAS  PubMed  Google Scholar 

  2. Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, Perlis RH, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45:984–94.

    CAS  PubMed  Google Scholar 

  3. Bipolar D, Schizophrenia Working Group of the Psychiatric Genomics Consortium. Electronic address drve, Bipolar D, Schizophrenia Working Group of the Psychiatric Genomics C. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell. 2018;173:1705–15. e16.

    Google Scholar 

  4. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Onuchic V, Lurie E, Carrero I, Pawliczek P, Patel RY, Rozowsky J, et al. Allele-specific epigenome maps reveal sequence-dependent stochastic switching at regulatory loci. Science. 2018;361:6409.

    Google Scholar 

  6. Ni C, Jiang W, Wang Z, Wang Z, Zhang J, Zheng X, et al. LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizophrenia. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0662-3.

    Article  PubMed  Google Scholar 

  7. Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN, et al. Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet. 2010;86:196–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Meaburn EL, Schalkwyk LC, Mill J. Allele-specific methylation in the human genome: implications for genetic studies of complex disease. Epigenetics. 2010;5:578–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. da Silva Francisco Junior R, Dos Santos Ferreira C, Santos ESJC, Terra Machado D, Cortes Martins Y, Ramos V, et al. Pervasive inter-individual variation in allele-specific expression in monozygotic twins. Front Genet. 2019;10:1178.

    PubMed  PubMed Central  Google Scholar 

  10. Shao X, Zhang C, Sun MA, Lu X, Xie H. Deciphering the heterogeneity in DNA methylation patterns during stem cell differentiation and reprogramming. BMC Genomics. 2014;15:978.

    PubMed  PubMed Central  Google Scholar 

  11. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics. 2009;25:2283–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fang F, Hodges E, Molaro A, Dean M, Hannon GJ, Smith AD. Genomic landscape of human allele-specific DNA methylation. Proc Natl Acad Sci USA. 2012;109:7332–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang S, Zhang H, Zhou Y, Qiao M, Zhao S, Kozlova A, et al. Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science. 2020;369:561–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. McCoy RC, Wakefield J, Akey JM. Impacts of Neanderthal-introgressed sequences on the landscape of human gene expression. Cell. 2017;168:916–27. e912.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc: Ser B (Stat Methodol). 2009;71:319–92.

    Google Scholar 

  16. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.

    Google Scholar 

  17. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH roadmap epigenomics mapping consortium. Nat Biotechnol. 2010;28:1045–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science. 2018;362:eaat8127.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, et al. DNA-binding specificities of human transcription factors. Cell. 2013;152:327–39.

    CAS  PubMed  Google Scholar 

  21. Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry. 2012;17:142–53.

    CAS  PubMed  Google Scholar 

  22. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bayes A, van de Lagemaat LN, Collins MO, Croning MD, Whittle IR, Choudhary JS, et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci. 2011;14:19–21.

    CAS  PubMed  Google Scholar 

  24. Pocklington AJ, Rees E, Walters JT, Han J, Kavanagh DH, Chambert KD, et al. Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron. 2015;86:1203–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Meehan TF, Conte N, West DB, Jacobsen JO, Mason J, Warren J, et al. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat Genet. 2017;49:1231–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. 2020 https://www.medrxiv.org/content/medrxiv/early/2020/09/13/2020.09.12.20192922.full.pdf. Accessed 2020.

  27. Pardinas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arion D, Corradi JP, Tang S, Datta D, Boothe F, He A, et al. Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder. Mol Psychiatry. 2015;20:1397–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Barnes MR, Huxley-Jones J, Maycox PR, Lennon M, Thornber A, Kelly F, et al. Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. J Neurosci Res. 2011;89:1218–27.

    CAS  PubMed  Google Scholar 

  30. Chen C, Cheng L, Grennan K, Pibiri F, Zhang C, Badner JA, et al. Two gene co-expression modules differentiate psychotics and controls. Mol Psychiatry. 2013;18:1308–14.

    CAS  PubMed  Google Scholar 

  31. Hagenauer MH, Schulmann A, Li JZ, Vawter MP, Walsh DM, Thompson RC, et al. Inference of cell type content from human brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diagnosis. PLoS ONE. 2018;13:e0200003.

    PubMed  PubMed Central  Google Scholar 

  32. Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet. 2005;14:241–53.

    CAS  PubMed  Google Scholar 

  33. Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T. Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry. 2004;9:406–16.

    CAS  PubMed  Google Scholar 

  34. Lanz TA, Joshi JJ, Reinhart V, Johnson K, Grantham LE 2nd, Volfson D. STEP levels are unchanged in pre-frontal cortex and associative striatum in post-mortem human brain samples from subjects with schizophrenia, bipolar disorder and major depressive disorder. PLoS ONE. 2015;10:e0121744.

    PubMed  PubMed Central  Google Scholar 

  35. Maycox PR, Kelly F, Taylor A, Bates S, Reid J, Logendra R, et al. Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Mol Psychiatry. 2009;14:1083–94.

    CAS  PubMed  Google Scholar 

  36. Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B, et al. Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res. 2008;1239:235–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Topalidou I, Cattin-Ortola J, Pappas AL, Cooper K, Merrihew GE, MacCoss MJ, et al. The EARP complex and its interactor EIPR-1 are required for cargo sorting to dense-core vesicles. PLoS Genet. 2016;12:e1006074.

    PubMed  PubMed Central  Google Scholar 

  38. Gershlick DC, Schindler C, Chen Y, Bonifacino JS. TSSC1 is novel component of the endosomal retrieval machinery. Mol Biol Cell. 2016;27:2867–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jaffe AE, Straub RE, Shin JH, Tao R, Gao Y, Collado-Torres L, et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci. 2018;21:1117–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Google Scholar 

  41. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 2018;46:D794–D801.

    CAS  PubMed  Google Scholar 

  42. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87–D92.

    CAS  PubMed  Google Scholar 

  43. Ridinger-Saison M, Evanno E, Gallais I, Rimmele P, Selimoglu-Buet D, Sapharikas E, et al. Epigenetic silencing of Bim transcription by Spi-1/PU.1 promotes apoptosis resistance in leukaemia. Cell Death Differ. 2013;20:1268–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Stern JL, Paucek RD, Huang FW, Ghandi M, Nwumeh R, Costello JC, et al. Allele-specific DNA methylation and its interplay with repressive histone marks at promoter-mutant TERT genes. Cell Rep. 2017;21:3700–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lynch MD, Smith AJ, De Gobbi M, Flenley M, Hughes JR, Vernimmen D, et al. An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J. 2012;31:317–29.

    CAS  PubMed  Google Scholar 

  46. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell. 2010;143:470–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marzi SJ, Meaburn EL, Dempster EL, Lunnon K, Paya-Cano JL, Smith RG, et al. Tissue-specific patterns of allelically-skewed DNA methylation. Epigenetics. 2016;11:24–35.

    PubMed  PubMed Central  Google Scholar 

  48. Wang H, Lou D, Wang Z. Crosstalk of genetic variants, allele-specific DNA methylation, and environmental factors for complex disease risk. Front Genet. 2018;9:695.

    CAS  PubMed  Google Scholar 

  49. Do C, Dumont ELP, Salas M, Castano A, Mujahed H, Maldonado L, et al. Allele-specific DNA methylation is increased in cancers and its dense mapping in normal plus neoplastic cells increases the yield of disease-associated regulatory SNPs. Genome Biol. 2020;21:153.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Do C, Lang CF, Lin J, Darbary H, Krupska I, Gaba A, et al. Mechanisms and disease associations of haplotype-dependent allele-specific DNA methylation. Am J Hum Genet. 2016;98:934–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Smith CL, Goldsmith CA, Eppig JT. The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol. 2005;6:R7.

    PubMed  Google Scholar 

  52. Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun. 2018;9:2098.

    PubMed  PubMed Central  Google Scholar 

  53. Li QS, Parrado AR, Samtani MN, Narayan VA.Alzheimer’s Disease Neuroimaging I. Variations in the FRA10AC1 fragile site and 15q21 are associated with cerebrospinal fluid Abeta1-42 level. PLoS ONE. 2015;10:e0134000.

    PubMed  PubMed Central  Google Scholar 

  54. Li QS, Tian C, Seabrook GR, Drevets WC, Narayan VA. Analysis of 23andMe antidepressant efficacy survey data: implication of circadian rhythm and neuroplasticity in bupropion response. Transl Psychiatry. 2016;6:e889.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China [grant number 81671333, 82001411], the Guangdong Science and Technology Foundation [grant number 2019B030316032, 2017A050506026], China Postdoctoral Science Foundation [grant number 2020M682806], and the Science and Technology Program of Guangzhou [grant number 201804010259] for providing financial supports.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: QL, ZW, LZ, and CZ. Performed the experiments: QL, LZ, LY, BG, WL, YL, YH, LZ, and SL. Analyzed the data: QY, ZW, LZ, JY, HO, and CZ. Collected and diagnosed the control and patient subjects: TJ, QY, XZ, FW, and XH. Wrote the paper: QL, ZW, LZ, and CZ.

Corresponding author

Correspondence to Cunyou Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, Z., Zong, L. et al. Allele-specific DNA methylation maps in monozygotic twins discordant for psychiatric disorders reveal that disease-associated switching at the EIPR1 regulatory loci modulates neural function. Mol Psychiatry 26, 6630–6642 (2021). https://doi.org/10.1038/s41380-021-01126-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01126-w

This article is cited by

Search

Quick links