Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elucidating the relationship between white matter structure, demographic, and clinical variables in schizophrenia—a multicenter harmonized diffusion tensor imaging study

This article has been updated

Abstract

White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) “Which clinical variables explain WM abnormalities?”. (2) “Does the degree of WM abnormalities predict symptom severity?”. (3) “Does sex influence any of those relationships?”. Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Association between white matter, age, and duration-of-illness.
Fig. 2: Association between white matter, symptom severity, and IQ (structural equation model).

Similar content being viewed by others

Change history

  • 02 February 2021

    The original version of this Article was updated shortly after publication following an error that resulted in the incorrect. Author name: It should be “These authors contributed equally: Matcheri Keshavan, Marek Kubicki,” but it is “These authors contributed equally: Matcheri Keshavan, Marek Kubick” (Kubicki versus Kubick). The HTML version was correct at the time of publication.

References

  1. Janssen EM, McGinty EE, Azrin ST, Juliano-Bult D, Daumit GL. Review of the evidence: prevalence of medical conditions in the United States population with serious mental illness. Gen Hosp Psychiatry. 2015;37:199–222.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001;49:1–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed. 2002;15:456–67.

    Article  PubMed  Google Scholar 

  4. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34:51–61.

    Article  CAS  Google Scholar 

  5. Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C, et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry. 2018;23:1261–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ellison-Wright I, Nathan PJ, Bullmore ET, Zaman R, Dudas RB, Agius M, et al. Distribution of tract deficits in schizophrenia. BMC Psychiatry. 2014;14:99.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kanaan RA, Borgwardt S, McGuire PK, Craig MC, Murphy DG, Picchioni M, et al. Microstructural organization of cerebellar tracts in schizophrenia. Biol Psychiatry. 2009;66:1067–9.

    Article  PubMed  Google Scholar 

  8. Sun Z, Wang F, Cui L, Breeze J, Du X, Wang X, et al. Abnormal anterior cingulum in patients with schizophrenia: a diffusion tensor imaging study. Neuroreport Oct 6, 2003. 2003;14:1833–6.

    Google Scholar 

  9. Molina V, Lubeiro A, Soto O, Rodriguez M, Alvarez A, Hernandez R, et al. Alterations in prefrontal connectivity in schizophrenia assessed using diffusion magnetic resonance imaging. Prog Neuropsychopharmacol Biol Psychiatry. 2017;76:107–15.

    Article  PubMed  Google Scholar 

  10. Seitz J, Zuo JX, Lyall AE, Makris N, Kikinis Z, Bouix S, et al. Tractography analysis of 5 white matter bundles and their clinical and cognitive correlates in early-course schizophrenia. Schizophr Bull. 2016;42:762–71.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karlsgodt KH, van Erp TG, Poldrack RA, Bearden CE, Nuechterlein KH, Cannon TD. Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biol Psychiatry. 2008;63:512–8.

    Article  PubMed  Google Scholar 

  12. Voineskos AN, Foussias G, Lerch J, Felsky D, Remington G, Rajji TK, et al. Neuroimaging evidence for the deficit subtype of schizophrenia. JAMA Psychiatry. 2013;70:472–80.

    Article  PubMed  Google Scholar 

  13. Xiao Y, Sun H, Shi S, Jiang D, Tao B, Zhao Y et al. White Matter Abnormalities in Never-Treated Patients With Long-Term Schizophrenia. Am J Psychiatry. 2018: appiajp201817121402.

  14. Chen YJ, Liu CM, Hsu YC, Lo YC, Hwang TJ, Hwu HG, et al. Individualized prediction of schizophrenia based on the whole-brain pattern of altered white matter tract integrity. Hum Brain Mapp. 2018;39:575–87.

    Article  PubMed  Google Scholar 

  15. Hawco C, Voineskos AN, Radhu N, Rotenberg D, Ameis S, Backhouse FA, et al. Age and gender interactions in white matter of schizophrenia and obsessive compulsive disorder compared to non-psychiatric controls: commonalities across disorders. Brain Imaging Behav. 2017;11:1836–48.

    Article  PubMed  Google Scholar 

  16. Woodberry KA, Giuliano AJ, Seidman LJ. Premorbid IQ in schizophrenia: a meta-analytic review. Am J Psychiatry. 2008;165:579–87.

    Article  PubMed  Google Scholar 

  17. Agnew-Blais J, Seidman LJ, Fitzmaurice GM, Smoller JW, Goldstein JM, Buka SL. The interplay of childhood behavior problems and IQ in the development of later schizophrenia and affective psychoses. Schizophr Res. 2017;184:45–51.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kanaan R, Barker G, Brammer M, Giampietro V, Shergill S, Woolley J, et al. White matter microstructure in schizophrenia: effects of disorder, duration and medication. Br J Psychiatry. 2009;194:236–42.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang F, Qiu L, Yuan L, Ma H, Ye R, Yu F, et al. Evidence for progressive brain abnormalities in early schizophrenia: a cross-sectional structural and functional connectivity study. Schizophr Res. 2014;159:31–35.

    Article  PubMed  Google Scholar 

  20. Wu CH, Hwang TJ, Chen YJ, Hsu YC, Lo YC, Liu CM, et al. Primary and secondary alterations of white matter connectivity in schizophrenia: A study on first-episode and chronic patients using whole-brain tractography-based analysis. Schizophr Res. 2015;169:54–61.

    Article  PubMed  Google Scholar 

  21. Hummer TA, Francis MM, Vohs JL, Liffick E, Mehdiyoun NF, Breier A. Characterization of white matter abnormalities in early-stage schizophrenia. Early Inter Psychiatry. 2018;12:660–8.

    Article  Google Scholar 

  22. Cea-Canas B, de Luis R, Lubeiro A, Gomez-Pilar J, Sotelo E, Del Valle P, et al. Structural connectivity in schizophrenia and bipolar disorder: Effects of chronicity and antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2019;92:369–77.

    Article  CAS  PubMed  Google Scholar 

  23. Meng L, Li K, Li W, Xiao Y, Lui S, Sweeney JA, et al. Widespread white-matter microstructure integrity reduction in first-episode schizophrenia patients after acute antipsychotic treatment. Schizophr Res. 2019;204:238–44.

    Article  PubMed  Google Scholar 

  24. Serpa MH, Doshi J, Erus G, Chaim-Avancini TM, Cavallet M, van de Bilt MT, et al. State-dependent microstructural white matter changes in drug-naive patients with first-episode psychosis. Psychol Med. 2017;47:2613–27.

    Article  CAS  PubMed  Google Scholar 

  25. Dietsche B, Kircher T, Falkenberg I. Structural brain changes in schizophrenia at different stages of the illness: a selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry. 2017;51:500–8.

    Article  PubMed  Google Scholar 

  26. Kraguljac NV, Anthony T, Skidmore FM, Marstrander J, Morgan CJ, Reid MA, et al. Micro- and Macrostructural White Matter Integrity in Never-Treated and Currently Unmedicated Patients With Schizophrenia and Effects of Short-Term Antipsychotic Treatment. Biol Psychiatry Cogn Neurosci Neuroimaging. 2019;4:462–71.

    PubMed  PubMed Central  Google Scholar 

  27. Lee JS, Han K, Lee SK, Seok JH, Kim JJ. Altered structural connectivity and trait anhedonia in patients with schizophrenia. Neurosci Lett. 2014;579:7–11.

    Article  CAS  PubMed  Google Scholar 

  28. Gu C, Zhang Y, Wei F, Cheng Y, Cao Y, Hou H. Magnetic resonance imaging DTI-FT study on schizophrenic patients with typical negative first symptoms. Exp therapeutic Med. 2016;12:1450–4.

    Article  Google Scholar 

  29. Szeszko PR, Robinson DG, Ashtari M, Vogel J, Betensky J, Sevy S, et al. Clinical and Neuropsychological Correlates of White Matter Abnormalities in Recent Onset Schizophrenia. Neuropsychopharmacology. 2008;33:976–84.

    Article  PubMed  Google Scholar 

  30. Melicher T, Horacek J, Hlinka J, Spaniel F, Tintera J, Ibrahim I, et al. White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophr Res. 2015;162:22–28.

    Article  CAS  PubMed  Google Scholar 

  31. Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, et al. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry. 2020;10:100.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mirzaalian H, Ning L, Savadjiev P, Pasternak O, Bouix S, Michailovich O, et al. Multi-site harmonization of diffusion MRI data in a registration framework. Brain Imaging Behav. 2018;12:284–95.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cetin Karayumak S, Bouix S, Ning L, James A, Crow T, Shenton M, et al. Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters. Neuroimage. 2019;184:180–200.

    Article  PubMed  Google Scholar 

  34. Cetin-Karayumak S, Di Biase MA, Chunga N, Reid B, Somes N, Lyall AE, et al. White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study. Mol Psychiatry. 2020;25:3208–19.

    Article  PubMed  Google Scholar 

  35. Cetin Karayumak S, Kubicki M, Rathi Y. Harmonizing Diffusion MRI Data Across Magnetic Field Strengths. Cham: Springer International Publishing; 2018.

  36. Ning L, Bonet-Carne E, Grussu F, Sepehrband F, Kaden E, Veraart J, et al. Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results. Neuroimage. 2020;221:117128.

    Article  PubMed  Google Scholar 

  37. Muti-shell Diffusion MRI. Harmonisation and Enhancement Challenge (MUSHAC): Progress and Results. Cham: Springer International Publishing; 2019.

    Google Scholar 

  38. Zhang S, Arfanakis K. Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences. Neuroimage. 2018;172:40–50.

    Article  PubMed  Google Scholar 

  39. Seitz J, Cetin-Karayumak S, Lyall A, Pasternak O, Baxi M, Vangel M, et al. Investigating Sexual Dimorphism of Human White Matter in a Harmonized, Multisite Diffusion Magnetic Resonance Imaging Study. Cereb Cortex. 2021;31:201–12.

    Article  PubMed  Google Scholar 

  40. Eack SM, Greeno CG, Pogue-Geile MF, Newhill CE, Hogarty GE, Keshavan MS. Assessing social-cognitive deficits in schizophrenia with the Mayer-Salovey-Caruso Emotional Intelligence Test. Schizophr Bull. 2010;36:370–80.

    Article  PubMed  Google Scholar 

  41. Kline ER, DeTore NR, Keefe K, Seidman LJ, Srihari VH, Keshavan MS, et al. Development and validation of the client engagement and service use scale: a pilot study. Schizophr Res. 2018;201:343–6.

    Article  PubMed  Google Scholar 

  42. Annett M. A classification of hand preference by association analysis. Br J Psychol (Lond, Engl: 1953). 1970;61:303–21.

    CAS  Google Scholar 

  43. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.

    Article  CAS  PubMed  Google Scholar 

  44. Wechsler D. Wechsler Adult Intelligence Scale. 3 edn. San Antonio, Texas: Psychological Corporation; 1997.

    Google Scholar 

  45. Wechsler D. Wechsler Test of Adult Reading. WTAR. San Antonio, TX: Psychological Corporation; 2001.

  46. Wilkinson GS, Robertson GJ. WRAT 3 administration manual. Wilmington, DE: Jastak Associates; 1993.

    Google Scholar 

  47. Wilkinson GS, Robertson GJ. Wide Range Achievement Test. Fourth Edition. Lutz, FL: Psychological Assessment Resources; 2006. edn

    Google Scholar 

  48. Ventura J, Green MF, Shaner A, Liberman RP. Training and quality assurance with the brief psychiatric rating scale: “the drift busters”. Int J methods Psychiatr Res. 1993;3:221–44.

    Google Scholar 

  49. Woerner MG, Mannuzza SJMK. Anchoring the Brief Psychiatric Rating Scale (An aid to improve reliability). Psychopharmacol Bull. 1988;24:112–7.

    CAS  PubMed  Google Scholar 

  50. Kay SR, Fizbin A, Lindenmayer JP, Opler LA. Positive and Negative Syndromes in Schizophrenia as a Function of Chronicity. Acta Psychiatr Scand. 1986;74:507–18.

    Article  CAS  PubMed  Google Scholar 

  51. Sohler NL, Walkup J, McAlpine D, Boyer C, Olfson M. Antipsychotic dosage at hospital discharge and outcomes among persons with schizophrenia. Psychiatr Serv. 2003;54:1258–63.

    Article  PubMed  Google Scholar 

  52. Kochunov P, Glahn DC, Lancaster J, Thompson PM, Kochunov V, Rogers B, et al. Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage. 2011;58:41–49.

    Article  CAS  PubMed  Google Scholar 

  53. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage. 2008;40:1044–55.

    Article  CAS  PubMed  Google Scholar 

  54. Lebel C, Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci. 2011;31:10937–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hayes AF. Introduction to Mediation, Moderation, and Conditional Process Analysis. 2 edn. New York: Guilford Press; 2017.

    Google Scholar 

  56. Hayes AF, Rockwood NJ. Regression-based statistical mediation and moderation analysis in clinical research: observations, recommendations, and implementation. Behav Res Ther. 2017;98:39–57.

    Article  PubMed  Google Scholar 

  57. Whitford TJ, Kubicki M, Schneiderman JS, O’Donnell LJ, King R, Alvarado JL, et al. Corpus Callosum Abnormalities and Their Association with Psychotic Symptoms in Patients with Schizophrenia. Biol Psychiat. 2010;68:70–77.

    Article  PubMed  Google Scholar 

  58. Knochel C, O’Dwyer L, Alves G, Reinke B, Magerkurth J, Rotarska-Jagiela A, et al. Association between white matter fiber integrity and subclinical psychotic symptoms in schizophrenia patients and unaffected relatives. Schizophr Res. 2012;140:129–35.

    Article  PubMed  Google Scholar 

  59. Hayakawa YK, Kirino E, Shimoji K, Kamagata K, Hori M, Ito K, et al. Anterior cingulate abnormality as a neural correlate of mismatch negativity in schizophrenia. Neuropsychobiology. 2013;68:197–204.

    Article  PubMed  Google Scholar 

  60. Tanskanen P, Ridler K, Murray GK, Haapea M, Veijola JM, Jaaskelainen E, et al. Morphometric brain abnormalities in schizophrenia in a population-based sample: relationship to duration of illness. Schizophr Bull. 2010;36:766–77.

    Article  PubMed  Google Scholar 

  61. Schneiderman JS, Hazlett EA, Chu KW, Zhang J, Goodman CR, Newmark RE, et al. Brodmann area analysis of white matter anisotropy and age in schizophrenia. Schizophr Res. 2011;130:57–67.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E. The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry. 2008;165:1015–23.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Grieve SM, Clark CR, Williams LM, Peduto AJ, Gordon E. Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp. 2005;25:391–401.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001;14:21–36.

    Article  CAS  PubMed  Google Scholar 

  65. Hu M, Zong X, Zheng J, Mann JJ, Li Z, Pantazatos SP, et al. Risperidone-induced topological alterations of anatomical brain network in first-episode drug-naive schizophrenia patients: a longitudinal diffusion tensor imaging study. Psychol Med. 2016;46:2549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang Q, Cheung C, Deng W, Li M, Huang C, Ma X, et al. White-matter microstructure in previously drug-naive patients with schizophrenia after 6 weeks of treatment. Psychol Med. 2013;43:2301–9.

    Article  CAS  PubMed  Google Scholar 

  67. Zeng B, Ardekani BA, Tang Y, Zhang T, Zhao S, Cui H, et al. Abnormal white matter microstructure in drug-naive first episode schizophrenia patients before and after eight weeks of antipsychotic treatment. Schizophr Res. 2016;172:1–8.

    Article  PubMed  Google Scholar 

  68. Ebdrup BH, Raghava JM, Nielsen MO, Rostrup E, Glenthoj B. Frontal fasciculi and psychotic symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of selective dopamine D2/3 receptor blockade. J Psychiatry Neurosci. 2016;41:133–41.

    Article  PubMed  Google Scholar 

  69. Reis Marques T, Taylor H, Chaddock C, Dell’acqua F, Handley R, Reinders AA, et al. White matter integrity as a predictor of response to treatment in first episode psychosis. Brain. 2014;137:172–82.

    Article  PubMed  Google Scholar 

  70. Kates WR, Olszewski AK, Gnirke MH, Kikinis Z, Nelson J, Antshel KM, et al. White matter microstructural abnormalities of the cingulum bundle in youths with 22q11.2 deletion syndrome: associations with medication, neuropsychological function, and prodromal symptoms of psychosis. Schizophr Res. 2015;161:76–84.

    Article  PubMed  Google Scholar 

  71. Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry. 2011;68:128–37.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tishler TA, Bartzokis G, Lu PH, Raven EP, Khanoyan M, Kirkpatrick CJ, et al. Abnormal Trajectory of Intracortical Myelination in Schizophrenia Implicates White Matter in Disease Pathophysiology and the Therapeutic Mechanism of Action of Antipsychotics. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2018;3:454–62.

    Google Scholar 

  73. Andreasen NC, Pressler M, Nopoulos P, Miller D, Ho BC. Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biol Psychiatry. 2010;67:255–62.

    Article  CAS  PubMed  Google Scholar 

  74. Yang X, Cao D, Liang X, Zhao J. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis. Neuroradiology. 2017;59:699–708.

    Article  PubMed  Google Scholar 

  75. Peters BD, de Haan L, Dekker N, Blaas J, Becker HE, Dingemans PM, et al. White matter fibertracking in first-episode schizophrenia, schizoaffective patients and subjects at ultra-high risk of psychosis. Neuropsychobiology. 2008;58:19–28.

    Article  PubMed  Google Scholar 

  76. Kawashima T, Nakamura M, Bouix S, Kubicki M, Salisbury DF, Westin CF, et al. Uncinate fasciculus abnormalities in recent onset schizophrenia and affective psychosis: a diffusion tensor imaging study. Schizophr Res. 2009;110:119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Luck D, Buchy L, Czechowska Y, Bodnar M, Pike GB, Campbell JSW, et al. Fronto-temporal disconnectivity and clinical short-term outcome in first episode psychosis: A DTI-tractography study. J Psychiatr Res. 2011;45:369–77.

    Article  PubMed  Google Scholar 

  78. Amoretti S, Cabrera B, Torrent C, Mezquida G, Lobo A, Gonzalez-Pinto A, et al. Cognitive reserve as an outcome predictor: first-episode affective versus non-affective psychosis. Acta Psychiatr Scand. 2018;138:441–55.

    Article  CAS  PubMed  Google Scholar 

  79. Cuesta MJ, Sanchez-Torres AM, Cabrera B, Bioque M, Merchan-Naranjo J, Corripio I, et al. Premorbid adjustment and clinical correlates of cognitive impairment in first-episode psychosis. The PEPsCog Study. Schizophr Res. 2015;164:65–73.

    Article  PubMed  Google Scholar 

  80. Eberhard J, Riley F, Levander S.Premorbid IQ and schizophrenia. Increasing cognitive reduction by episodes. Eur Arch Psychiatry Clin Neurosci.2003;253:84–88.

    Article  PubMed  Google Scholar 

  81. Barnett JH, Salmond CH, Jones PB, Sahakian BJ. Cognitive reserve in neuropsychiatry. Psychol Med. 2006;36:1053–64.

    Article  CAS  PubMed  Google Scholar 

  82. Van Rheenen TE, Cropley V, Fagerlund B, Wannan C, Bruggemann J, Lenroot RK, et al. Cognitive reserve attenuates age-related cognitive decline in the context of putatively accelerated brain ageing in schizophrenia-spectrum disorders. Psychol Med. 2020;50:1475–89.

    Article  PubMed  Google Scholar 

  83. de la Serna E, Andres-Perpina S, Puig O, Baeza I, Bombin I, Bartres-Faz D, et al. Cognitive reserve as a predictor of two year neuropsychological performance in early onset first-episode schizophrenia. Schizophr Res. 2013;143:125–31.

    Article  PubMed  Google Scholar 

  84. Amoretti S, Bernardo M, Bonnin CM, Bioque M, Cabrera B, Mezquida G, et al. The impact of cognitive reserve in the outcome of first-episode psychoses: 2-year follow-up study. Eur Neuropsychopharmacol. 2016;26:1638–48.

    Article  CAS  PubMed  Google Scholar 

  85. Amoretti S, Cabrera B, Torrent C, Bonnin CDM, Mezquida G, Garriga M et al. Cognitive Reserve Assessment Scale in Health (CRASH): Its Validity and Reliability. J Clin Med. 2019;8.

  86. Friston KJ. The disconnection hypothesis. Schizophrenia Res. 1998;30:115–25.

    Article  CAS  Google Scholar 

  87. Friston K, Brown HR, Siemerkus J, Stephan KE. The dysconnection hypothesis (2016). Schizophrenia Res. 2016;176:83–94.

    Article  Google Scholar 

  88. Schmitt A, Hasan A, Gruber O, Falkai P. Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci. 2011;261(Suppl 2):S150–S154. Suppl 2

    Article  PubMed  Google Scholar 

  89. Friston KJ. Dysfunctional connectivity in schizophrenia. World Psychiatry. 2002;1:66–71.

    PubMed  PubMed Central  Google Scholar 

  90. Zhang J, Cheng W, Liu Z, Zhang K, Lei X, Yao Y, et al. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain. 2016;139(Pt 8):2307–21.

    Article  PubMed  Google Scholar 

  91. Takano Y, Aoki Y, Yahata N, Kawakubo Y, Inoue H, Iwashiro N, et al. Neural basis for inferring false beliefs and social emotions in others among individuals with schizophrenia and those at ultra-high risk for psychosis. Psychiatry Res Neuroimaging. 2017;259:34–41.

    Article  PubMed  Google Scholar 

  92. Wojtalik JA, Smith MJ, Keshavan MS, Eack SM. A Systematic and Meta-analytic Review of Neural Correlates of Functional Outcome in Schizophrenia. Schizophr Bull. 2017;43:1329–47.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Furuichi A, Kawasaki Y, Takahashi T, Nakamura K, Tanino R, Noguchi K, et al. Altered neural basis of self-reflective processing in schizophrenia: An fMRI study. Asian J Psychiatr. 2019;45:53–60.

    Article  PubMed  Google Scholar 

  94. Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, et al. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev. 2020;41:273–319.

    Article  Google Scholar 

  95. Lenroot RK, Giedd JN. Sex differences in the adolescent brain. Brain Cogn. 2010;72:46–55.

    Article  PubMed  Google Scholar 

  96. Ho TC, Colich NL, Sisk LM, Oskirko K, Jo B, Gotlib IH. Sex differences in the effects of gonadal hormones on white matter microstructure development in adolescence. Developmental Cogn Neurosci. 2020;42:100773.

    Article  Google Scholar 

  97. Arvanitis DN, Wang H, Bagshaw RD, Callahan JW, Boggs JM. Membrane-associated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes. J Neurosci Res. 2004;75:603–13.

    Article  CAS  PubMed  Google Scholar 

  98. Wischhof L, Irrsack E, Osorio C, Koch M. Prenatal LPS-exposure–a neurodevelopmental rat model of schizophrenia–differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry. 2015;57:17–30.

    Article  CAS  PubMed  Google Scholar 

  99. Bergen SE, O’Dushlaine CT, Lee PH, Fanous AH, Ruderfer DM, Ripke S, et al. Genetic modifiers and subtypes in schizophrenia: investigations of age at onset, severity, sex and family history. Schizophr Res. 2014;154:48–53.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Schmithorst VJ. Developmental sex differences in the relation ofneuroanatomical connectivity to intelligence. Intelligence. 2009;37:164–73.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pasternak O, Sochen N, Gur Y, Intrator N, Assaf Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med. 2009;62:717–30.

    Article  PubMed  Google Scholar 

  102. Pasternak O, Shenton ME, Westin CF. Estimation of extracellular volume from regularized multi-shell diffusion MRI. Med Image Comput Comput Assist Inter. 2012;15(Pt 2):305–12.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding provided by the following National Institutes of Health (NIH) grants: R01MH102377, K24MH110807 (PI: Dr MK), R01MH119222 (PI: Dr YR), R03 MH110745, K01 MH115247–01A1 (PI: Dr AL), VA Merit Award and U01 MH109977 (PI: Dr MS), R01MH108574 (PI: Dr OP), MRC G0500092 (PI: Dr AJ), R01MH076995 (PI: Dr PS), P50MH080173 (PI: Dr AKM), 1R01 MH102318-01A1 (PI: Dr RWB), R01MH092440, MH078113 (PI: Dr MK), MH077851 (PI: Dr CT), MH077945 (PI: Dr GP), MH077862 (PI: Dr JS), R21MH121704 (PI: Dr JL). We also acknowledge funding provided by the BWH Program for Interdisciplinary Neurosciences (through a gift from Lawrence and Tiina Rand), BBRF NARSAD Young Investigator grant (PI: Dr SCK), Swiss National Science Foundation (SNF) grant 152619 (PI: Dr SW) and National Research Foundation of Korea (NRF) grant NRF-2012R1A1A1006514 (PI: Dr JL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Seitz-Holland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seitz-Holland, J., Cetin-Karayumak, S., Wojcik, J.D. et al. Elucidating the relationship between white matter structure, demographic, and clinical variables in schizophrenia—a multicenter harmonized diffusion tensor imaging study. Mol Psychiatry 26, 5357–5370 (2021). https://doi.org/10.1038/s41380-021-01018-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01018-z

This article is cited by

Search

Quick links