Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies

Abstract

Reduced hippocampal volume is a consistent finding in neuroimaging studies of individuals with schizophrenia. While these studies have the advantage of large-sample sizes, they are unable to quantify the cellular basis of structural or functional changes. In contrast, postmortem studies are well suited to explore subfield and cellular alterations, but low sample sizes and subject heterogeneity impede establishment of statistically significant differences. Here we use a meta-analytic approach to synthesize the extant literature of hippocampal subfield volume and cellular composition in schizophrenia patients and healthy control subjects. Following pre-registration (PROSPERO CRD42019138280), PubMed, Web of Science, and PsycINFO were searched using the term: (schizophrenia OR schizoaffective) AND (post-mortem OR postmortem) AND hippocampus. Subjects were adult men and women with schizophrenia or schizoaffective disorder or non-psychiatric control subjects, and key outcomes, stratified by hippocampal hemisphere and subfield, were volume, neuron number, neuron density, and neuron size. A random effects meta-analysis was performed. Thirty-two studies were included (413 patients, 415 controls). In patients, volume and neuron number were significantly reduced in multiple hippocampal subfields in left, but not right hippocampus, whereas neuron density was not significantly different in any hippocampal subfield. Neuron size, averaged bilaterally, was also significantly reduced in all calculated subfields. Heterogeneity was minimal to moderate, with rare evidence of publication bias. Meta-regression of age and illness duration did not explain heterogeneity of total hippocampal volume effect sizes. These results extend neuroimaging findings of smaller hippocampal volume in schizophrenia patients and further our understanding of regional and cellular neuropathology in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Forest plot depicting the effect sizes for studies reporting on the total hippocampus in the left and right hemisphere.
Fig. 3: Forest plot depicting the effect sizes for studies reporting on subiculum in the left and right hemisphere.
Fig. 4: Forest plot depicting the effect sizes for studies reporting on CA1 in the left and right hemisphere.
Fig. 5: Summary of overall meta-analysis findings between patients and control subjects: hippocampal volume, neuron number, neuron density, and neuron size changes by subfield and hemisphere.

Similar content being viewed by others

References

  1. Heckers S, Konradi C. Hippocampal neurons in schizophrenia. J Neural Transm. 2002;109:891–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haijma SV, Van Haren N, Cahn W, Koolschijn PCMP, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18000 subjects. Schizophr Bull. 2013;39:1129–38.

    Article  PubMed  Google Scholar 

  3. Adriano F, Caltagirone C, Spalletta G. Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. Neuroscientist. 2012;18:180–200.

    Article  PubMed  Google Scholar 

  4. Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry. 2005;162:2233–45.

    Article  PubMed  Google Scholar 

  5. Brugger SP, Howes OD. Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis. JAMA Psychiatry. 2017;74:1104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016;21:547–53.

    Article  PubMed  Google Scholar 

  7. Haukvik UK, Tamnes CK, Söderman E, Agartz I. Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: a systematic review and meta-analysis. J Psychiatr Res. 2018;104(July):217–26.

    Article  PubMed  Google Scholar 

  8. Nelson MD, Saykin AJ, Flashman LA, Riordan HJ. Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry. 1998;55:433–40.

    Article  CAS  PubMed  Google Scholar 

  9. Freund TF, Buzsáki G. Interneurons of the hippocampus. Hippocampus. 1998;6:347–470.

    Article  Google Scholar 

  10. Olbrich HG, Braak H. Ratio of pyramidal cells versus non-pyramidal cells in sector CA1 of the human Ammon’s horn. Anat Embryol (Berl). 1985;173:105–10.

    Article  CAS  Google Scholar 

  11. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci. 2008;31:234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heckers S, Konradi C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res. 2015;167:4–11.

    Article  PubMed  Google Scholar 

  13. Haukvik UK, Westlye LT, Mørch-Johnsen L, Jørgensen KN, Lange EH, Dale AM, et al. In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder. Biol Psychiatry. 2015;77:581–8.

    Article  PubMed  Google Scholar 

  14. Yushkevich PA, Amaral RSC, Augustinack JC, Bender AR, Bernstein JD, Boccardi M, et al. Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol. Neuroimage. 2015;111:526–41.

    Article  PubMed  Google Scholar 

  15. Witter MP, Wouterlood FG, Naber PA, Van Haeften T. Anatomical organization of the parahippocampal-hippocampal network. Ann N Y Acad Sci. 2006;911:1–24.

    Article  Google Scholar 

  16. Duvernoy HM, Cattin F, Risold PY, Vannson JL, Gaudron M. The human hippocampus: functional anatomy, vascularization and serial sections with MRI, 4th edn. Vol. 4. Berlin: Springer; 2013. p. 1–237.

  17. Lieberman JA, Girgis RR, Brucato G, Moore H, Provenzano F, Kegeles L, et al. Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol Psychiatry. 2018;23:1764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron. 2013;78:81–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage. 2015;115:117–37.

    Article  PubMed  Google Scholar 

  20. Huwaldt JA. Plot Digitizer [Internet]. Source Forge. 2014. http://plotdigitizer.sourceforge.net/

  21. Zaidel DW, Esiri MM, Harrison PJ. Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry. 1997;154:812–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hedges LV. Distribution theory for glass’s estimator of effect size and related estimators. J Educ Behav Stat. 1981;6:107.

    Article  Google Scholar 

  23. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  24. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997;315:629–34.

    Article  CAS  Google Scholar 

  25. Allen KM, Fung SJ, Shannon Weickert C. Cell proliferation is reduced in the hippocampus in schizophrenia. Aust N Z J Psychiatry. 2016;50:473–80.

    Article  PubMed  Google Scholar 

  26. Altshuler LL, Casanova MF, Goldberg TE, Kleinman JE. The hippocampus and parahippocampus in schizophrenic, suicide, and control brains. Arch Gen Psychiatry. 1990;47:1029–34.

    Article  CAS  PubMed  Google Scholar 

  27. Hurlemann R, Tepest R, Maier W, Falkai P, Vogeley K. Intact hippocampal gray matter in schizophrenia as revealed by automatized image analysis postmortem. Anat and Embryol. 2005;210:513–7.

    Article  Google Scholar 

  28. Christison GW, Casanova MF, Weinberger DR, Rawlings R, Kleinman JE. A quantitative investigation of hippocampal pyramidal cell size, shape, and variability of orientation in schizophrenia. Arch Gen Psychiatry. 1989;46:1027–32.

    Article  CAS  PubMed  Google Scholar 

  29. Miyaoka T, Seno H, Ishino H. Increased expression of Wnt-1 in schizophrenic brains. Schizophr Res. 1999;38:1–6.

    Article  CAS  PubMed  Google Scholar 

  30. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry. 2006;11:514–22.

    Article  CAS  PubMed  Google Scholar 

  31. Rioux L, Arnold SE. The expression of retinoic acid receptor alpha is increased in the granule cells of the dentate gyrus in schizophrenia. Psychiatry Res. 2005;133:13–21.

    Article  CAS  PubMed  Google Scholar 

  32. Schmitt A, Steyskal C, Bernstein HG, Schneider-Axmann T, Parlapani E, Schaeffer EL, et al. Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol. 2009;117:395–407.

    Article  PubMed  Google Scholar 

  33. Wada A, Kunii Y, Ikemoto K, Yang Q, Hino M, Matsumoto J, et al. Increased ratio of calcineurin immunoreactive neurons in the caudate nucleus of patients with schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;37:8–14.

    Article  CAS  Google Scholar 

  34. Wang AY, Lohmann KM, Yang CK, Zimmerman EI, Pantazopoulos H, Herring N, et al. Bipolar disorder type 1 and schizophrenia are accompanied by decreased density of parvalbumin- and somatostatin-positive interneurons in the parahippocampal region. Acta Neuropathol. 2011;122:615–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zaidel DW. Regional differentiation of neuron morphology in human left and right hippocampus: comparing normal to schizophrenia. Int J Psychophysiol. 1999;34:187–96.

    Article  CAS  PubMed  Google Scholar 

  36. Porebski A, Buslei R, Bayer TA, Vogeley K, Bogerts B, Majtenyi C, et al. Analysis of the ratio of calretinin-expressing interneurons and pyramidal neurons in the hippocampus of patients with schizophrenia. Neurol Psychiatry Brain Res. 1999;7:143–6.

    Google Scholar 

  37. Bogerts B, Meertz E, Schönfeldt Bausch R. Basal ganglia and limbic system pathology in schizophrenia: a morphometric study of brain volume and shrinkage. Arch Gen Psychiatry. 1985;42:784–91.

    Article  CAS  PubMed  Google Scholar 

  38. Falkai P, Bogerts B. Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatry Neurol Sci. 1986;236:154–61.

    Article  CAS  PubMed  Google Scholar 

  39. Walker MA, Highley JR, Esiri MM, McDonald B, Roberts HC, Evans SP, et al. Estimated neuronal populations and volumes of the hippocampus and its subfields in schizophrenia. Am J Psychiatry. 2002;159:821–8.

    Article  PubMed  Google Scholar 

  40. Heckers S, Heinsen H, Geiger B, Beckmann H. Hippocampal neuron number in schizophrenia: a stereological study. Arch Gen Psychiatry. 1991;48:1002–8.

    Article  CAS  PubMed  Google Scholar 

  41. Heckers S, Heinsen H, Heinsen YC, Beckmann H. Limbic structures and lateral ventricle in schizophrenia: a quantitative postmortem study. Arch Gen Psychiatry. 1990;47:1016–22.

    Article  CAS  PubMed  Google Scholar 

  42. Bogerts B, Falkai P, Haupts M, Greve B, Ernst S, Tapernon-Franz U, et al. Post-mortem volume measurements of limbic system and basal ganglia structures in chronic schizophrenics. Initial results from a new brain collection. Schizophr Res. 1990;3:295–301.

    Article  CAS  PubMed  Google Scholar 

  43. Rosenthal R, Bigelow LB. Quantitative brain measurements in chronic schizophrenia. Br J Psychiatry. 1972;121:259–64.

    Article  CAS  PubMed  Google Scholar 

  44. Gos T, Myint AM, Schiltz K, Meyer-Lotz G, Dobrowolny H, Busse S, et al. Reduced microglial immunoreactivity for endogenous NMDA receptor agonist quinolinic acid in the hippocampus of schizophrenia patients. Brain Behav Immun. 2014;41:59–64.

    Article  CAS  PubMed  Google Scholar 

  45. Fatemi SH, Earle JA, McMenomy T. Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry. 2000;5:654–63.

    Article  CAS  PubMed  Google Scholar 

  46. Konradi C, Yang CK, Zimmerman EI, Lohmann KM, Gresch P, Pantazopoulos H, et al. Hippocampal interneurons are abnormal in schizophrenia. Schizophr Res. 2011;131:165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Benes FM, Sorensen I, Bird ED. Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull. 1991;17:597–608.

    Article  CAS  PubMed  Google Scholar 

  48. Chen F, Bertelsen AB, Holm IE, Nyengaard JR, Rosenberg R, Dorph-Petersen KA. Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain Res. 2020;1727:146546.

    Article  CAS  PubMed  Google Scholar 

  49. Falkai P, Malchow B, Wetzestein K, Nowastowski V, Bernstein HG, Steiner J, et al. Decreased oligodendrocyte and neuron number in anterior hippocampal areas and the entire hippocampus in schizophrenia: a stereological postmortem study. Schizophr Bull. 2016;42:S4–12.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Oliveira RMW, Guimarães FS, Deakin JFW. Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders. Braz J Med Biol Res. 2008;41:333–41.

    Article  CAS  PubMed  Google Scholar 

  51. Arnold SE, Franz BR, Gur RC, Gur RE, Shapiro RM, Moberg PJ, et al. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical-hippocampal interactions. Am J Psychiatry. 1995;152:738–48.

    Article  CAS  PubMed  Google Scholar 

  52. Zaidel DW, Esiri MM, Harrison PJ. The hippocampus in schizophrenia: lateralized increase in neuronal density and altered cytoarchitectural asymmetry. Psychol Med. 1997;27:703–13.

    Article  CAS  PubMed  Google Scholar 

  53. Freedman R, Hall M, Adler LE, Leonard S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry. 1995;38:22–33.

    Article  CAS  PubMed  Google Scholar 

  54. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull. 2006;70:221–7.

    Article  CAS  PubMed  Google Scholar 

  55. Scarr E, Hopper S, Vos V, Suk Seo M, Everall IP, Aumann TD, et al. Low levels of muscarinic M1 receptor–positive neurons in cortical layers III and V in Brodmann areas 9 and 17 from individuals with schizophrenia. J Psychiatry Neurosci. 2018;43:338–46.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Luts A, Jönsson SAT, Guldberg-Kjaer N, Brun A. Uniform abnormalities in the hippocampus of five chronic schizophrenic men compared with age-matched controls. Acta Psychiatr Scand. 1998;98:60–4.

    Article  CAS  PubMed  Google Scholar 

  57. Jeste DV, Lohr JB. Hippocampal pathologic findings in schizophrenia: a morphometric study. Arch Gen Psychiatry. 1989;46:1019–24.

    Article  CAS  PubMed  Google Scholar 

  58. Benes FM, Kwok EW, Vincent SL, Todtenkopf MS. A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry. 1998;44:88–97.

    Article  CAS  PubMed  Google Scholar 

  59. Benes FM, Khan Y, Vincent SL, Wickramasinghe R. Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse. 1996;22:338–49.

    Article  CAS  PubMed  Google Scholar 

  60. Todtenkopf MS, Benes FM. Distribution of glutamate decarboxylase65 immunoreactive puncta on pyramidal and nonpyramidal neurons in hippocampus of schizophrenic brain. Synapse. 1998;29:323–32.

    Article  CAS  PubMed  Google Scholar 

  61. Liu L, Schulz SC, Lee S, Reutiman TJ, Fatemi SH. Hippocampal CA1 pyramidal cell size is reduced in bipolar disorder. Cell Mol Neurobiol. 2007;27:351–8.

    Article  PubMed  Google Scholar 

  62. Jönsson SAT, Luts A, Guldberg-Kjaer N, Öhman R. Pyramidal neuron size in the hippocampus of schizophrenics correlates with total cell count and degree of cell disarray. Eur Arch Psychiatry Clin Neurosci. 1999;249:169–73.

    Article  PubMed  Google Scholar 

  63. Highley JR, Walker MA, McDonald B, Crow TJ, Esiri MM. Size of hippocampal pyramidal neurons in schizophrenia. Br J Psychiatry. 2003;183(Nov.):414–7.

    Article  CAS  PubMed  Google Scholar 

  64. Jönsson SAT, Luts A, Guldberg-Kjaer N, Brun A. Hippocampal pyramidal cell disarray correlates negatively to cell number: implications for the pathogenesis of schizophrenia. Eur Arch Psychiatry Clin Neurosci. 1997;247:120–7.

    Article  PubMed  Google Scholar 

  65. Schreiber S, Bernstein H-G, Fendrich R, Stauch R, Ketzler B, Dobrowolny H, et al. Increased density of GAD65/67 immunoreactive neurons in the posterior subiculum and parahippocampal gyrus in treated patients with chronic schizophrenia. World J Biol Psychiatry. 2011;12:57–65.

    Article  PubMed  Google Scholar 

  66. Zhang ZJ, Reynolds GP. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res. 2002;55:1–10.

    Article  PubMed  Google Scholar 

  67. Falkai P, Steiner J, Malchow B, Shariati J, Knaus A, Bernstein HG, et al. Oligodendrocyte and interneuron density in hippocampal subfields in schizophrenia and association of oligodendrocyte number with cognitive deficits. Front Cell Neurosci. 2016;10(MAR 2016):1–13.

    Google Scholar 

  68. Fu R, Gartlehner G, Grant M, Shamliyan T, Sedrakyan A, Wilt TJ, et al. Conducting quantitative synthesis when comparing medical interventions: AHRQ and the Effective Health Care Program. J Clin Epidemiol. 2011;64:1187–97.

    Article  PubMed  Google Scholar 

  69. Okada N, Fukunaga M, Yamashita F, Koshiyama D, Yamamori H, Ohi K, et al. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol Psychiatry. 2016;21:1460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zaidel DW, Esiri MM, Eastwood SL, Harrison PJ. Asymmetrical hippocampal circuitry and schizophrenia. Lancet. 1995;345:656–7.

    Article  CAS  PubMed  Google Scholar 

  71. Crow TJ, Ball J, Bloom SR, Brown R, Bruton CJ, Colter N, et al. Schizophrenia as an anomaly of development of cerebral asymmetry. A postmortem study and a proposal concerning the genetic basis of the disease. Arch Gen Psychiatry. 1989;46:1145–50.

    Article  CAS  PubMed  Google Scholar 

  72. Weinberger DR, Suddath RL, Casanova MF, Torrey EF, Kleinman JE. Crow’s ‘Lateralization Hypothesis’ for Schizophrenia. Arch Gen Psychiatry. 1991;48:85.

    Article  CAS  PubMed  Google Scholar 

  73. Harrison PJ, Law AJ, Eastwood SL. Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann N Y Acad Sci. 2003;1003:94–101.

    Article  CAS  PubMed  Google Scholar 

  74. Harrison PJ. The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacol (Berl). 2004;174:151–62.

    Article  CAS  Google Scholar 

  75. Reynolds GP, Czudek C, Andrews HB. Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol Psychiatry. 1990;27:1038–44.

    Article  CAS  PubMed  Google Scholar 

  76. Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol. 2000;12:501–27.

    Article  CAS  PubMed  Google Scholar 

  77. Bajic D, Canto Moreira N, Wikström J, Raininko R. Asymmetric development of the hippocampal region is common: a fetal MR imaging study. Am J Neuroradiol. 2012;33:513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weinberger DR. From neuropathology to neurodevelopment. Lancet. 1995;346:552–7.

    Article  CAS  PubMed  Google Scholar 

  79. Benes FM. Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiatry. 1999;46:589–99.

    Article  CAS  PubMed  Google Scholar 

  80. Perez JM, Berto S, Gleason K, Ghose S, Tan C, Kim TK, et al. Hippocampal subfield transcriptome analysis in schizophrenia psychosis. Mol Psychiatry. 2020;1–13.

  81. Harrison PJ, Colbourne L, Harrison CH. The neuropathology of bipolar disorder: systematic review and meta-analysis. Mol Psychiatry. 2018;1–22.

  82. Brændgaard H, Gundersen HJG. The impact of recent stereological advances on quantitative studies of the nervous system. J Neurosci Methods. 1986;18:39–78.

    Article  PubMed  Google Scholar 

  83. Schmitz C, Hof PR. Design-based stereology in neuroscience. Neuroscience. 2005;130:813–31.

    Article  CAS  PubMed  Google Scholar 

  84. Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15:655–69.

    Article  CAS  PubMed  Google Scholar 

  85. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron. 2010;65:7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Velakoulis D, Pantelis C, McGorry PD, Dudgeon P, Brewer W, Cook M, et al. Hippocampal volume in first-episode psychoses and chronic schizophrenia: a high-resolution magnetic resonance imaging study. Arch Gen Psychiatry. 1999;56:133–40.

    Article  CAS  PubMed  Google Scholar 

  87. Šimić G, Kostović I, Winblad B, Bogdanović N. Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol. 1997;379:482–94.

    Article  PubMed  Google Scholar 

  88. Boonstra G, Van Haren NEM, Schnack HG, Cahn W, Burger H, Boersma M, et al. Brain volume changes after withdrawal of atypical antipsychotics in patients with first-episode schizophrenia. J Clin Psychopharmacol. 2011;31:146–53.

    Article  CAS  PubMed  Google Scholar 

  89. Goff DC, Falkai P, Fleischhacker WW, Girgis RR, Kahn RM, Uchida H, et al. The long-term effects of antipsychotic medication on clinical course in schizophrenia. Am J Psychiatry. 2017;174:840–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Charlotte and Donald Test Fund and National Institutes of Health grants K23MH116339 (ASL) and R01MH70560 (SH). The authors thank Simon Vandekar, PhD and Ahra Kim, MPH for helpful comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. Lewis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roeske, M.J., Konradi, C., Heckers, S. et al. Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol Psychiatry 26, 3524–3535 (2021). https://doi.org/10.1038/s41380-020-0853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0853-y

This article is cited by

Search

Quick links