Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effects of oral contraceptive pills on mood and magnetic resonance imaging measures of prefrontal cortical thickness


Gonadal hormones influence neuronal organization and plasticity. Yet the consequences of altering their concentrations by administering contraceptive agents, which are used by most reproductive-age women in the United States, are unclear. Cross-sectional studies have found both larger and smaller cortical regions alongside a variety of mood alterations in women who use oral contraceptive pills (OCPs) compared to naturally-cycling women. The goal of this study, therefore, was to determine whether there is an effect of OCPs on MRI measures of prefrontal cortical brain structure that may influence regulation of mood. We performed a double-blind, placebo-controlled, randomized crossover study comparing effects of OCPs (0.15 mg levonorgestrel + 0.30 μg ethinyl estradiol) vs placebo (N = 26) on MRI measures of prefrontal cortical thickness and on mood, as indicated by self-report on the Daily Record of Severity of Problems, which also includes one item related to somatic symptoms. MRI measures that reflect cortical thickness were smaller bilaterally in the pars triangularis and in the pars opercularis and frontal pole of the right hemisphere during the OCP arm vs. placebo. Only the effect in the right pars triangularis survived multiple comparisons correction. Right pars triangularis MRI measures of cortical thickness were not related to mood symptoms, but negatively correlated across conditions with severity of somatic symptoms on the DSRP. The somatic symptoms and MRI measures may be independently related to the actions of steroid hormones in OCPs, with OCPs simultaneously inducing both more effects on MRI measures of cortical thickness and somatic symptoms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CONSORT diagram describing the overall flow of the study.
Fig. 2: OCPs significantly increased BDI scores.
Fig. 3: OCPs reduce right pars triangularis thickness.


  1. 1.

    Taggart TC, Eaton NR, Keyes KM, Hammett JF, Ulloa EC. Oral contraceptive use is associated with greater mood stability and higher relationship satisfaction. Neurol Psychiatry Brain Res. 2018;30:154–62.

    Google Scholar 

  2. 2.

    Hamstra DA, de Kloet ER, de Rover M, Van der Does W. Oral contraceptives positively affect mood in healthy PMS-free women: a longitudinal study. J Psychosom Res. 2017;103:119–26.

    PubMed  Google Scholar 

  3. 3.

    Cheslack-Postava K, Keyes KM, Lowe SR, Koenen KC. Oral contraceptive use and psychiatric disorders in a nationally representative sample of women. Arch Women’s Ment Health. 2015;18:103–11.

    Google Scholar 

  4. 4.

    Keyes KM, Cheslack-Postava K, Westhoff C, Heim CM, Haloossim M, Walsh K, et al. Association of hormonal contraceptive use with reduced levels of depressive symptoms: a national study of sexually active women in the United States. Am J Epidemiol. 2013;178:1378–88.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Skovlund CW, Mørch LS, Kessing LV, Lidegaard Ø. Association of hormonal contraception with depression. JAMA Psychiatry. 2016;73:1154–62.

    PubMed  Google Scholar 

  6. 6.

    Skovlund CW, Mørch LS, Kessing LV, Lange T, Lidegaard Ø. Association of hormonal contraception with suicide attempts and suicides. Am J psychiatry. 2018;175:336–42.

    PubMed  Google Scholar 

  7. 7.

    de Wit AE, Booij SH, Giltay EJ, Joffe H, Schoevers RA, Oldehinkel AJ. Association of use of oral contraceptives with depressive symptoms among adolescents and young women. JAMA Psychiatry. 2020;77:52–9.

    PubMed  Google Scholar 

  8. 8.

    Shakerinejad G, Hidarnia A, Motlagh ME, Karami K, Niknami S, Montazeri A. Factors predicting mood changes in oral contraceptive pill users. Reprod Health. 2013;10:45.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Westhoff CL, Heartwell S, Edwards S, Zieman M, Stuart G, Cwiak C, et al. Oral contraceptive discontinuation: do side effects matter? Am J Obstet Gynecol. 2007;196:412. e411-412. e417

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wiebe ER, Brotto LA, MacKay J. Characteristics of women who experience mood and sexual side effects with use of hormonal contraception. J Obstet Gynaecol Can. 2011;33:1234–40.

    PubMed  Google Scholar 

  11. 11.

    Lobo RA, Stanczyk FZ. New knowledge in the physiology of hormonal contraceptives. Am J Obstet Gynecol. 1994;170:1499–507.

    CAS  PubMed  Google Scholar 

  12. 12.

    Collins DC. Sex hormone receptor binding, progestin selectivity, and the new oral contraceptives. Am J Obstet Gynecol. 1994;170:1508–13.

    CAS  PubMed  Google Scholar 

  13. 13.

    Fleischman DS, Navarrete CD, Fessler DMT. Oral contraceptives suppress ovarian hormone production. Psychol Sci. 2010;21:750–2.

    PubMed  Google Scholar 

  14. 14.

    Pletzer B, Kronbichler M, Aichhorn M, Bergmann J, Ladurner G, Kerschbaum HH. Menstrual cycle and hormonal contraceptive use modulate human brain structure. Brain Res. 2010;1348:55–62.

    CAS  PubMed  Google Scholar 

  15. 15.

    Sharma R, Smith SA, Boukina N, Dordari A, Mistry A, Taylor BC, et al. Use of the birth control pill affects stress reactivity and brain structure and function. Hormones Behav. 2020;124:104783.

    CAS  Google Scholar 

  16. 16.

    Petersen N, Touroutoglou A, Andreano JM, Cahill L. Oral contraceptive pill use is associated with localized decreases in cortical thickness. Hum brain Mapp. 2015;36:2644–54.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Pletzer B, Kronbichler M, Kerschbaum H. Differential effects of androgenic and anti-androgenic progestins on fusiform and frontal gray matter volume and face recognition performance. Brain Res. 2015;1596:108–15.

    CAS  PubMed  Google Scholar 

  18. 18.

    Bi R, Foy MR, Vouimba RM, Thompson RF, Baudry M. Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway. Proc Natl Acad Sci USA. 2001;98:13391–5.

    CAS  PubMed  Google Scholar 

  19. 19.

    Liu F, Day M, Muñiz LC, Bitran D, Arias R, Revilla-Sanchez R, et al. Activation of estrogen receptor-β regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci. 2008;11:334–43.

    CAS  PubMed  Google Scholar 

  20. 20.

    Woolley CS. Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Hormones Behav. 1998;34:140–8.

    CAS  Google Scholar 

  21. 21.

    Brinton RD. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends Pharmacol Sci. 2009;30:212–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Haraguchi S, Sasahara K, Shikimi H, Honda S-i, Harada N, Tsutsui K. Estradiol promotes purkinje dendritic growth, spinogenesis, and synaptogenesis during neonatal life by inducing the expression of BDNF. Cerebellum. 2012;11:416–7.

    CAS  PubMed  Google Scholar 

  23. 23.

    Fester L, Rune GM. Sexual neurosteroids and synaptic plasticity in the hippocampus. Brain Res. 2015;1621:162–9.

    CAS  PubMed  Google Scholar 

  24. 24.

    Sato K, Akaishi T, Matsuki N, Ohno Y, Nakazawa K. β-Estradiol induces synaptogenesis in the hippocampus by enhancing brain-derived neurotrophic factor release from dentate gyrus granule cells. Brain Res. 2007;1150:108–20.

    CAS  PubMed  Google Scholar 

  25. 25.

    Woolley CS, McEwen BS. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol. 1993;336:293–306.

    CAS  PubMed  Google Scholar 

  26. 26.

    Naftolin F, Mor G, Horvath TL, Luquin S, Fajer AB, Kohen F, et al. Synaptic remodeling in the arcuate nucleus during the estrous cycle is induced by estrogen and precedes the preovulatory gonadotropin surge. Endocrinology. 1996;137:5576–80.

    CAS  PubMed  Google Scholar 

  27. 27.

    Parducz A, Perez J, Garcia-Segura L. Estradiol induces plasticity of GABAergic synapses in the hypothalamus. Neuroscience. 1993;53:395–401.

    CAS  PubMed  Google Scholar 

  28. 28.

    Inghilleri M, Conte A, Curra A, Frasca V, Lorenzano C, Berardelli A. Ovarian hormones and cortical excitability. An rTMS study in humans. Clin Neurophysiol. 2004;115:1063–8.

    CAS  PubMed  Google Scholar 

  29. 29.

    Lee S, Chung SW, Rogasch NC, Thomson CJ, Worsley RN, Kulkarni J, et al. The influence of endogenous estrogen on transcranial direct current stimulation: a preliminary study. Eur J Neurosci. 2018;48:2001–12.

    PubMed  Google Scholar 

  30. 30.

    Smith MJ, Adams LF, Schmidt PJ, Rubinow DR, Wassermann EM. Effects of ovarian hormones on human cortical excitability. Ann Neurol. 2002;51:599–603.

    CAS  PubMed  Google Scholar 

  31. 31.

    Bixo M, Andersson A, Winblad B, Purdy RH, Bäckström T. Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 1997;764:173–8.

    CAS  PubMed  Google Scholar 

  32. 32.

    Bixo M, Bäckström T, Winblad B, Andersson A. Estradiol and testosterone in specific regions of the human female brain in different endocrine states. J Steroid Biochem Mol Biol. 1995;55:297–303.

    CAS  PubMed  Google Scholar 

  33. 33.

    Matochik JA, London ED, Yildiz BO, Ozata M, Caglayan S, DePaoli AM, et al. Effect of leptin replacement on brain structure in genetically leptin-deficient adults. J Clin Endocrinol Metab. 2005;90:2851–4.

    CAS  PubMed  Google Scholar 

  34. 34.

    Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;10:647–58.

    CAS  PubMed  Google Scholar 

  35. 35.

    Videbech P, Yttri JE. The effect of antidepressants on brain volume. Ugeskr Laege. 2019;181:38.

    Google Scholar 

  36. 36.

    Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci. 2012;1251:E1.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Schwartz JL, Creinin MD, Pymar HC, Reid L. Predicting risk of ovulation in new start oral contraceptive users. Obstet Gynecol. 2002;99:177–82.

    PubMed  Google Scholar 

  38. 38.

    Danforth DR, Hodgen GD. “Sunday start” multiphasic oral contraception: ovulation prevention and delayed follicular atresia in primates. Contraception. 1989;39:321–30.

    CAS  PubMed  Google Scholar 

  39. 39.

    Killick S, Eyong E, Elstein M.Ovarian follicular development in oral contraceptive cycles** Supported by Wyeth International, Philadelphia, Pennsylvania.Fertil Steril. 1987;48:409–13.

    CAS  PubMed  Google Scholar 

  40. 40.

    Hoogland HJ, Skouby SO. Ultrasound evaluation of ovarian activity under oral contraceptives. Contraception. 1993;47:583–90.

    CAS  PubMed  Google Scholar 

  41. 41.

    Endicott J, Nee J, Harrison W. Daily Record of Severity of Problems (DRSP): reliability and validity. Arch Women’s Ment health. 2006;9:41–9.

    CAS  Google Scholar 

  42. 42.

    Beck AT, Steer RA, Carbin MG. Psychometric properties of the Beck Depression Inventory: twenty-five years of evaluation. Clin Psychol Rev. 1988;8:77–100.

    Google Scholar 

  43. 43.

    Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–94.

    CAS  Google Scholar 

  44. 44.

    Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    PubMed  Google Scholar 

  45. 45.

    Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14:11–22.

    PubMed  Google Scholar 

  46. 46.

    Klapwijk ET, Van De Kamp F, Van Der Meulen M, Peters S, Wierenga LM. Qoala-T: a supervised-learning tool for quality control of FreeSurfer segmented MRI data. Neuroimage. 2019;189:116–29.

    PubMed  Google Scholar 

  47. 47.

    Tamnes CK, Østby Y, Fjell AM, Westlye LT, Due-Tønnessen P, Walhovd KB. Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex. 2009;20:534–48.

    PubMed  Google Scholar 

  48. 48.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol). 1995;57:289–300.

    Google Scholar 

  49. 49.

    Lamm C, Decety J, Singer T. Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage. 2011;54:2492–502.

    PubMed  Google Scholar 

  50. 50.

    Pletzer B. Sex hormones and gender role relate to grey matter volumes in sexually dimorphic brain areas. Front Neurosci. 2019;13:592.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Hantsoo L, Epperson CN. Allopregnanolone in premenstrual dysphoric disorder (PMDD): evidence for dysregulated sensitivity to GABA-A receptor modulating neuroactive steroids across the menstrual cycle. Neurobiol Stress. 2020;12:100213.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Walton N, Maguire J. Allopregnanolone-based treatments for postpartum depression: Why/how do they work? Neurobiol Stress. 2019;11:100198.

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Sasahara K, Shikimi H, Haraguchi S, Sakamoto H, Honda S-i, Harada N, et al. Mode of action and functional significance of estrogen-inducing dendritic growth, spinogenesis, and synaptogenesis in the developing Purkinje cell. J Neurosci. 2007;27:7408–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Fester L, Prange-Kiel J, Zhou L, Blittersdorf BV, Böhm J, Jarry H, et al. Estrogen-regulated synaptogenesis in the hippocampus: sexual dimorphism in vivo but not in vitro. J steroid Biochem Mol Biol. 2012;131:24–29.

    CAS  PubMed  Google Scholar 

  55. 55.

    Pletzer B, Harris T, Hidalgo-Lopez E. Previous contraceptive treatment relates to grey matter volumes in the hippocampus and basal ganglia. Sci Rep. 2019;9:11003.

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Finer LB, Zolna MR. Declines in unintended pregnancy in the United States, 2008-11. N Engl J Med. 2016;374:843–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Nations U. Contraceptive use by method 2019: data booklet (ST/ESA/SER.A/435). Department of Economic and Social Affairs, Population Division 2019.

Download references


This work was supported by NIDA (R21DA040168 to EDL), the Marjorie Greene Family Trust, and the Thomas P and Katherine K Pike Chair in Addiction Studies (EDL).

Author information



Corresponding author

Correspondence to Edythe D. London.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petersen, N., Kearley, N.W., Ghahremani, D.G. et al. Effects of oral contraceptive pills on mood and magnetic resonance imaging measures of prefrontal cortical thickness. Mol Psychiatry 26, 917–926 (2021).

Download citation


Quick links