Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long tracks of homozygosity predict the severity of alcohol use disorders in an American Indian population

Abstract

Runs of homozygosity (ROH) arise when an individual inherits two copies of the same haplotype segment. While ROH are ubiquitous across human populations, Native populations—with shared parental ancestry arising from isolation and endogamy—can carry a substantial enrichment for ROH. We have been investigating genetic and environmental risk factors for alcohol use disorders (AUD) in a group of American Indians (AI) who have higher rates of AUD than the general U. S. population. Here we explore whether ROH might be associated with incidence and severity of AUD in this admixed AI population (n = 742) that live on geographically contiguous reservations, using low-coverage whole genome sequences. We have found that the genomic regions in the ROH that were identified in this population had significantly elevated American Indian heritage compared with the rest of the genome. Increased ROH abundance and ROH burden are likely risk factors for AUD severity in this AI population, especially in those diagnosed with severe and moderate AUD. The association between ROH and AUD was mostly driven by ROH of moderate lengths between 1 and 2 Mb. An ROH island on chromosome 1p32.3 and a rare ROH pool on chromosome 3p12.3 were found to be significantly associated with AUD severity. They contain genes involved in lipid metabolism, oxidative stress and inflammatory responses; and OSBPL9 was found to reside on the consensus part of the ROH island. These data demonstrate that ROH are associated with risk for AUD severity in this AI population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ROH distribution on chromosome 1 in the American Indian population.
Fig. 2: Relationships between ROH and American Indian ancestry.
Fig. 3: Two subgroups were identified by the unsupervised clustering analysis with respect to the relationships between AUD severity and FROH.
Fig. 4: Associations between ROH pools and AUD severity.

Similar content being viewed by others

Data and code availability

In accordance with the wishes of the tribes no sharing of the AI data are possible. All analysis codes were written in R and are available upon requests.

References

  1. Grant BF, Goldstein RB, Saha TD, Chou SP, Jung J, Zhang H, et al. Epidemiology of DSM-5 alcohol use disorder: Results from the national epidemiologic survey on alcohol and related conditions III. JAMA Psychiatry. 2015;72:757–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Compton WM, Thomas YF, Stinson FS, Grant BF. Prevalence, correlates, disability, and comorbidity of DSM-IV drug abuse and dependence in the United States: results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry. 2007;64:566–76.

    Article  PubMed  Google Scholar 

  3. Ehlers CL, Gizer IR. Evidence for a genetic component for substance dependence in Native Americans. Am J Psychiatry. 2013;170:154–64.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Edenberg HJ, McClintick JN. Alcohol dehydrogenases, aldehyde dehydrogenases, and alcohol use disorders: a critical review. Alcohol Clin Exp Res. 2018;42:2281–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Edenberg HJ, Foroud T. Genetics and alcoholism. Nat Rev Gastroenterol Hepatol. 2013;10:487–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gelernter J, Kranzler HR, Sherva R, Almasy L, Koesterer R, Smith AH, et al. Genome-wide association study of alcohol dependence:significant findings in African- and European-Americans including novel risk loci. Mol Psychiatry. 2014;19:41–9.

    Article  CAS  PubMed  Google Scholar 

  7. Jorgenson E, Thai KK, Hoffmann TJ, Sakoda LC, Kvale MN, Banda Y, et al. Genetic contributors to variation in alcohol consumption vary by race/ethnicity in a large multi-ethnic genome-wide association study. Mol Psychiatry. 2017;22:1359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hart AB, Kranzler HR. Alcohol dependence genetics: lessons learned from genome-wide association studies (GWAS) and post-GWAS analyses. Alcohol: Clin Exp Res. 2015;39:1312–27.

    Article  CAS  Google Scholar 

  9. Peng Q, Gizer IR, Libiger O, Bizon C, Wilhelmsen KC, Schork NJ, et al. Association and ancestry analysis of sequence variants in ADH and ALDH using alcohol-related phenotypes in a Native American community sample. Am J Med Genet Part B: Neuropsychiatr Genet. 2014;165:673–83.

    Article  CAS  Google Scholar 

  10. Peng Q, Gizer IR, Wilhelmsen KC, Ehlers CL. Associations between genomic variants in alcohol dehydrogenase genes and alcohol symptomatology in American Indians and European Americans: distinctions and convergence. Alcohol: Clin Exp Res. 2017;41:1695–704.

    Article  CAS  Google Scholar 

  11. Sanchez-Roige S, Palmer AA, Fontanillas P, Elson SL, Adams MJ, Howard DM, et al. Genome-wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts. Am J Psychiatry. 2018;176:107–18.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kranzler HR, Zhou H, Kember RL, Vickers Smith R, Justice AC, Damrauer S, et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat Commun. 2019;10:1499.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Clarke TK, Adams MJ, Davies G, Howard DM, Hall LS, Padmanabhan S, et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N=112 117). Mol Psychiatry. 2017;22:1376.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Peng Q, Bizon C, Gizer IR, Wilhelmsen KC, Ehlers CL. Genetic loci for alcohol-related life events and substance-induced affective symptoms: indexing the “dark side” of addiction. Transl Psychiatry. 2019;9:71.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Minster RL, Hawley NL, Su C-T, Sun G, Kershaw EE, Cheng H, et al. A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nat Genet. 2016;48:1049–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ehlers CL, Wilhelmsen KC. Genomic scan for alcohol craving in Mission Indians. Psychiatr Genet. 2005;15:71–5.

    Article  PubMed  Google Scholar 

  17. Ehlers CL, Wilhelmsen KC. Genomic screen for substance dependence and body mass index in southwest California Indians. Genes Brain Behav. 2007;6:184–91.

    Article  PubMed  Google Scholar 

  18. Mooney JA, Huber CD, Service S, Sul JH, Marsden CD, Zhang Z, et al. Understanding the hidden complexity of Latin American population isolates. Am J Hum Genet. 2018;103:707–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Leske S, Harris MG, Charlson FJ, Ferrari AJ, Baxter AJ, Logan JM, et al. Systematic review of interventions for Indigenous adults with mental and substance use disorders in Australia, Canada, New Zealand and the United States. Aust NZ J Psychiatry. 2016;50:1040–54.

    Article  Google Scholar 

  20. Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet. 2018;19:220.

    Article  CAS  PubMed  Google Scholar 

  21. Gibson J, Morton NE, Collins A. Extended tracts of homozygosity in outbred human populations. Hum Mol Genet. 2006;15:789–95.

    Article  CAS  PubMed  Google Scholar 

  22. Szpiech Zachary A, Xu J, Pemberton Trevor J, Peng W, Zöllner S, Rosenberg Noah A, et al. Long runs of homozygosity are enriched for deleterious variation. Am J Hum Genet. 2013;93:90–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Szpiech ZA, Mak ACY, White MJ, Hu D, Eng C, Burchard EG, et al. Ancestry-dependent enrichment of deleterious homozygotes in runs of homozygosity. Am J Hum Genet. 2019;105:747–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, et al. A simple genetic architecture underlies morphological variation in dogs. PLOS Biol. 2010;8:e1000451.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kim E-S, Cole JB, Huson H, Wiggans GR, Van Tassell CP, Crooker BA, et al. Effect of artificial selection on runs of homozygosity in U.S. Holstein Cattle. PLOS One. 2013;8:e80813.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, Sharifi AR, et al. A genome-wide scan for signatures of recent selection in Holstein cattle. Anim Genet. 2010;41:377–89.

    CAS  PubMed  Google Scholar 

  27. Ablondi M, Viklund Å, Lindgren G, Eriksson S, Mikko S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance. BMC Genomics. 2019;20:717.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Metzger J, Karwath M, Tonda R, Beltran S, Águeda L, Gut M, et al. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics. 2015;16:764.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Purfield DC, McParland S, Wall E, Berry DP. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PloS One. 2017;12:e0176780-e.

    Article  CAS  Google Scholar 

  30. Peripolli E, Munari DP, Silva MVGB, Lima ALF, Irgang R, Baldi F. Runs of homozygosity: current knowledge and applications in livestock. Anim Genet. 2017;48:255–71.

    Article  CAS  PubMed  Google Scholar 

  31. McQuillan R, Eklund N, Pirastu N, Kuningas M, McEvoy BP, Esko T, et al. Evidence of inbreeding depression on human height. PLOS Genet. 2012;8:e1002655.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Hu H, Kahrizi K, Musante L, Fattahi Z, Herwig R, Hosseini M, et al. Genetics of intellectual disability in consanguineous families. Mol Psychiatry. 2018;24:1027–39.

    Article  CAS  PubMed  Google Scholar 

  33. Gandin I, Faletra F, Faletra F, Carella M, Pecile V, Ferrero GB, et al. Excess of runs of homozygosity is associated with severe cognitive impairment in intellectual disability. Genet Med. 2014;17:396.

    Article  PubMed  Google Scholar 

  34. Howrigan DP, Simonson MA, Davies G, Harris SE, Tenesa A, Starr JM, et al. Genome-wide autozygosity is associated with lower general cognitive ability. Mol Psychiatry. 2015;21:837.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Howrigan DP, Simonson MA, Davies G, Harris SE, Tenesa A, Starr JM, et al. Genome-wide autozygosity is associated with lower general cognitive ability. Mol Psychiatry. 2016;21:837–43.

    Article  CAS  PubMed  Google Scholar 

  36. Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV, Kane JM, et al. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci. 2007;104:19942.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Keller MC, Simonson MA, Ripke S, Neale BM, Gejman PV, Howrigan DP, et al. Runs of Homozygosity Implicate Autozygosity as a Schizophrenia Risk Factor. PLOS Genet. 2012;8:e1002656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Casey JP, Magalhaes T, Conroy JM, Regan R, Shah N, Anney R, et al. A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Hum Genet. 2012;131:565–79.

    Article  PubMed  Google Scholar 

  39. Ghani M, Reitz C, Cheng R, et al. Association of long runs of homozygosity with alzheimer disease among african american individuals. JAMA Neurol. 2015;72:1313–23.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Nalls MA, Guerreiro RJ, Simon-Sanchez J, Bras JT, Traynor BJ, Gibbs JR, et al. Extended tracts of homozygosity identify novel candidate genes associated with late-onset Alzheimer’s disease. Neurogenetics. 2009;10:183–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Clark DW, Okada Y, Moore KHS, Mason D, Pirastu N, Gandin I, et al. Associations of autozygosity with a broad range of human phenotypes. Nat Commun. 2019;10:4957.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ehlers CL, Wall TL, Betancourt M, Gilder DA. The clinical course of alcoholism in 243 Mission Indians. Am J Psychiatry. 2004;161:1204–10.

    Article  PubMed  Google Scholar 

  43. Abdellaoui A, Hottenga J-J, Willemsen G, Bartels M, van Beijsterveldt T, Ehli EA, et al. Educational attainment influences levels of homozygosity through migration and assortative mating. PLOS ONE. 2015;10:e0118935.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Johnson EC, Evans LM, Keller MC. Relationships between estimated autozygosity and complex traits in the UK Biobank. PLOS Genet. 2018;14:e1007556.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ehlers CL, Gizer IR, Gilder DA, Wilhelmsen KC. Linkage analyses of stimulant dependence, craving, and heavy use in American Indians. Am J Med Genet Part B. 2011;156B:772–80.

    Article  CAS  PubMed  Google Scholar 

  46. Ehlers CL, Spence JP, Wall TL, Gilder DA, Carr LG. Association of ALDH1 promoter polymorphisms with alcohol-related phenotypes in southwest California Indians. Alcohol Clin Exp Res. 2004;28:1481–6.

    Article  CAS  PubMed  Google Scholar 

  47. Kalton G, Anderson DW. Sampling rare populations. J R Stat Soc. 1986;149:65–82.

    Google Scholar 

  48. Muhib FB, Lin LS, Stueve A, Miller RL, Ford WL, Johnson WD, et al. A venue-based method for sampling hard-to-reach populations. Public Health Rep. 2001;116:216–22.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Heckathorn DD. Respondent-driven sampling: a new approach to the study of hidden populations*. Soc Probl. 2014;44:174–99.

    Article  Google Scholar 

  50. Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JI Jr., et al. A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J Stud Alcohol. 1994;55:149–58.

    Article  CAS  PubMed  Google Scholar 

  51. Hesselbrock M, Easton C, Bucholz KK, Schuckit M, Hesselbrock V. A validity study of the SSAGA–a comparison with the SCAN. Addiction. 1999;94:1361–70.

    Article  CAS  PubMed  Google Scholar 

  52. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.

    Book  Google Scholar 

  53. Wall TL, Carr LG, Ehlers CL. Protective association of genetic variation in alcohol dehydrogenase with alcohol dependence in Native American Mission Indians. Am J Psychiatry. 2003;160:41–6.

    Article  PubMed  Google Scholar 

  54. Hesselbrock VM, Segal B, Hesselbrock MN. Alcohol dependence among Alaska Natives entering alcoholism treatment: a gender comparison. J Stud Alcohol. 2000;61:150–6.

    Article  CAS  PubMed  Google Scholar 

  55. Gilder DA, Wall TL, Ehlers CL. Comorbidity of select anxiety and affective disorders with alcohol dependence in southwest California Indians. Alcohol Clin Exp Res. 2004;28:1805–13.

    Article  PubMed  Google Scholar 

  56. Schuckit MA, Smith TL, Anthenelli R, Irwin M. Clinical course of alcoholism in 636 male inpatients. Am J Psychiatry. 1993;150:786–92.

    Article  CAS  PubMed  Google Scholar 

  57. Ehlers CL, Stouffer GM, Corey L, Gilder DA. The clinical course of DSM-5 alcohol use disorders in young adult native and Mexican Americans. Am J Addictions. 2015;24:713–21.

    Article  Google Scholar 

  58. Bizon C, Spiegel M, Chasse SA, Gizer IR, Li Y, Malc EP, et al. Variant calling in low-coverage whole genome sequencing of a Native American population sample. BMC Genomics. 2014;15:85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.0.1–33.

  61. Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR. Low-coverage sequencing: implications for design of complex trait association studies. Genome Res. 2011;21:940–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ceballos FC, Hazelhurst S, Ramsay M. Assessing runs of Homozygosity: a comparison of SNP Array and whole genome sequence low coverage data. BMC Genomics. 2018;19:106.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Chen H, Wang C, Conomos Matthew P, Stilp Adrienne M, Li Z, Sofer T, et al. Control for population structure and relatedness for binary traits in genetic association studies via logistic mixed models. Am J Hum Genet. 2016;98:653–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statis Soc B. 1995;57:289–300.

    Google Scholar 

  67. Leisch F. FlexMix: a general framework for finite mixture models and latent class regression in R. J Stat Softw. 2004;1:2004.

    Google Scholar 

  68. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2018;47:D886–94.

    Article  PubMed Central  CAS  Google Scholar 

  70. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kutmon M, Riutta A, Nunes N, Hanspers K, Willighagen Egon L, Bohler A, et al. WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res. 2016;44:D488–94.

    Article  CAS  PubMed  Google Scholar 

  72. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2013;42:D1001–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Nothnagel M, Lu TT, Kayser M, Krawczak M. Genomic and geographic distribution of SNP-defined runs of homozygosity in Europeans. Hum Mol Genet. 2010;19:2927–35.

    Article  CAS  PubMed  Google Scholar 

  75. GTEx Consortium T, Aguet F, Brown AA, Castel SE, Davis JR, He Y, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550:204.

    Article  PubMed Central  Google Scholar 

  76. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Karlsson Linnér R, Biroli P, Kong E, Meddens SFW, Wedow R, Fontana MA, et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat Genet. 2019;51:245–57.

    Article  CAS  PubMed  Google Scholar 

  78. Velez Edwards DR, Naj AC, Monda K, North KE, Neuhouser M, Magvanjav O, et al. Gene-environment interactions and obesity traits among postmenopausal African-American and Hispanic women in the Women’s Health Initiative SHARe Study. Hum Genet. 2013;132:323–36.

    Article  PubMed  Google Scholar 

  79. Walters RK, Polimanti R, Johnson EC, McClintick JN, Adams MJ, Adkins AE, et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci. 2018;21:1656–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51:237–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, et al. GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nat Hum Behav. 2020;4:308–16.

    Article  PubMed  Google Scholar 

  82. Edwards AC, Aliev F, Bierut LJ, Bucholz KK, Edenberg H, Hesselbrock V, et al. Genome-wide association study of comorbid depressive syndrome and alcohol dependence. Psychiatr Genet. 2012;22:31–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Sun Y, Chang S, Liu Z, Zhang L, Wang F, Yue W, et al. Identification of novel risk loci with shared effects on alcoholism, heroin, and methamphetamine dependence. Molecular Psychiatry. 2019. https://doi.org/10.1038/s41380-019-0497-y.

  84. Whitfield JB, Zhu G, Madden PAF, Montgomery GW, Heath AC, Martin NG. Biomarker and genomic risk factors for liver function test abnormality in hazardous drinkers. Alcohol, Clin Exp Res. 2019;43:473–82.

    Article  CAS  Google Scholar 

  85. Mutemberezi V, Buisseret B, Masquelier J, Guillemot-Legris O, Alhouayek M, Muccioli GG. Oxysterol levels and metabolism in the course of neuroinflammation: insights from in vitro and in vivo models. J Neuroinflammation. 2018;15:74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Sawyer KS, Adra N, Salz DM, Kemppainen MI, Ruiz SM, Harris GJ, et al. Hippocampal subfield volumes in abstinent men and women with a history of alcohol use disorder. PLOS ONE. 2020;15:e0236641.

  87. Maller JJ, Broadhouse K, Rush AJ, Gordon E, Koslow S, Grieve SM. Increased hippocampal tail volume predicts depression status and remission to anti-depressant medications in major depression. Mol Psychiatry. 2018;23:1737–44.

    Article  CAS  PubMed  Google Scholar 

  88. Skillbäck T, Farahmand BY, Rosén C, Mattsson N, Nägga K, Kilander L, et al. Cerebrospinal fluid tau and amyloid-β1-42 in patients with dementia. Brain. 2015;138:2716–31.

    Article  PubMed  Google Scholar 

  89. Kalinin S, González-Prieto M, Scheiblich H, Lisi L, Kusumo H, Heneka MT, et al. Transcriptome analysis of alcohol-treated microglia reveals downregulation of beta amyloid phagocytosis. J Neuroinflammation. 2018;15:141.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Olex AL, Hiltbold EM, Leng X, Fetrow JS. Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates. BMC Immunol. 2010;11:41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science. 2009;326:257.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Lawrimore CJ, Crews FT. Ethanol, TLR3, and TLR4 agonists have unique innate immune responses in neuron-like SH-SY5Y and microglia-Like BV2. Alcohol: Clin Exp Res. 2017;41:939–54.

    Article  CAS  Google Scholar 

  93. Warden AS, Azzam M, DaCosta A, Mason S, Blednov YA, Messing RO, et al. Toll-like receptor 3 activation increases voluntary alcohol intake in C57BL/6J male mice. Brain Behav Immun. 2019;77:55–65.

    Article  CAS  PubMed  Google Scholar 

  94. Karlsson G, Liu Y, Larsson J, Goumans M-J, Lee J-S, Thorgeirsson SS, et al. Gene expression profiling demonstrates that TGF-β1 signals exclusively through receptor complexes involving Alk5 and identifies targets of TGF-β signaling. Physiol Genom. 2005;21:396–403.

    Article  CAS  Google Scholar 

  95. Breitkopf K, Haas S, Wiercinska E, Singer MV, Dooley S. Anti-TGF-β Strategies for the treatment of chronic liver disease. Alcohol: Clin Exp Res. 2005;29:121S–31S.

    Article  CAS  Google Scholar 

  96. Kim Y-K, Lee BC, Ham BJ, Yang B-H, Roh S, Choi J, et al. Increased transforming growth factor-beta1 in alcohol dependence. J Korean Med Sci. 2009;24:941–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Siegenthaler JA, Miller MW. Transforming growth factor β1 modulates cell migration in rat cortex: effects of ethanol. Cereb Cortex. 2004;14:791–802.

    Article  PubMed  Google Scholar 

  98. Steiner JL, Lang CH. Alcohol, adipose tissue and lipid dysregulation. Biomolecules. 2017;7:16.

    Article  PubMed Central  CAS  Google Scholar 

  99. Jones SE, Lane JM, Wood AR, van Hees VT, Tyrrell J, Beaumont RN, et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat Commun. 2019;10:343.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Hoffmann TJ, Choquet H, Yin J, Banda Y, Kvale MN, Glymour M, et al. A large multiethnic genome-wide association study of adult body mass index identifies novel loci. Genetics. 2018;210:499.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Nagel M, Jansen PR, Stringer S, Watanabe K, de Leeuw CA, Bryois J, et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet. 2018;50:920–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge and thank all of our American Indian participants, and the following people for their roles in (1) the genotyping effort: Kirk Wilhelmsen, Scott Chasse, Piotr Mieczkowski, Ewa Patrycja Malc, Joshua Sailsbery, Phil Owens, and Chris Bizon; and (2) recruiting participants, and collection and preparation of the clinical data: David Gilder, Corinne Kim, Evie Phillips, Phillip Lau, and Derek Wills. This work was supported by the National Institutes of Health (NIH): National Institute on Alcohol Abuse and Alcoholism (NIAAA) K25 AA025095 to QP; NIAAA R01 AA027316 to CLE; National Institute on Drug Abuse (NIDA) R01 DA030976 to CLE. NIAAA and NIDA had no further role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Peng or Cindy L. Ehlers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Ehlers, C.L. Long tracks of homozygosity predict the severity of alcohol use disorders in an American Indian population. Mol Psychiatry 26, 2200–2211 (2021). https://doi.org/10.1038/s41380-020-00989-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00989-9

This article is cited by

Search

Quick links