Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PKBβ/AKT2 deficiency impacts brain mTOR signaling, prefrontal cortical physiology, hippocampal plasticity and select murine behaviors


The serine/threonine protein kinase v-AKT homologs (AKTs), are implicated in typical and atypical neurodevelopment. Akt isoforms Akt1, Akt2, and Akt3 have been extensively studied outside the brain where their actions have been found to be complementary, non-overlapping and often divergent. While the neurological functions of Akt1 and Akt3 isoforms have been investigated, the role for Akt2 remains underinvestigated. Neurobehavioral, electrophysiological, morphological and biochemical assessment of Akt2 heterozygous and knockout genetic deletion in mouse, reveals a novel role for Akt2 in axonal development, dendritic patterning and cell-intrinsic and neural circuit physiology of the hippocampus and prefrontal cortex. Akt2 loss-of-function increased anxiety-like phenotypes, impaired fear conditioned learning, social behaviors and discrimination memory. Reduced sensitivity to amphetamine was observed, supporting a role for Akt2 in regulating dopaminergic tone. Biochemical analyses revealed dysregulated brain mTOR and GSK3β signaling, consistent with observed learning and memory impairments. Rescue of cognitive impairments was achieved through pharmacological enhancement of PI3K/AKT signaling and PIK3CD inhibition. Together these data highlight a novel role for Akt2 in neurodevelopment, learning and memory and show that Akt2 is a critical and non-redundant regulator of mTOR activity in brain.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Akt2 HET and KO mice show altered locomotor activity, response to amphetamine, associative learning of environmental context, and reassessment of a learned aversive cue.
Fig. 2: Akt2 genetically modified mice display impaired recency discrimination memory and object location memory, but intact novel object memory.
Fig. 3: Abnormal sociability and social novelty preference in Akt2 HET and KO mice.
Fig. 4: Significant impairment of hippocampal LTP and decreased mPFC pyramidal neuron excitability in Akt2 KO mice.
Fig. 5: Preclinical relevance of PIK3CD signaling and pharmacological inhibition in Akt2 mice and evidence that Akt2 regulates mTOR signaling.


  1. 1.

    Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275:661–5.

    CAS  PubMed  Google Scholar 

  2. 2.

    Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9:59–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Jones PF, Jakubowicz T, Hemmings BA. Molecular cloning of a second form of rac protein kinase. Cell Regul. 1991;2:1001–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Masure S, Haefner B, Wesselink JJ, Hoefnagel E, Mortier E, Verhasselt P, et al. Molecular cloning, expression and characterization of the human serine/threonine kinase Akt-3. Eur J Biochem. 1999;265:353–60.

    CAS  PubMed  Google Scholar 

  5. 5.

    Liao Y, Hung MC. Physiological regulation of Akt activity and stability. Am J Transl Res. 2010;2:19–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Santi SA, Lee H. The Akt isoforms are present at distinct subcellular locations. Am J Physiol Cell Physiol. 2010;298:C580–91.

    CAS  PubMed  Google Scholar 

  8. 8.

    Clark AR, Toker A. Signalling specificity in the Akt pathway in breast cancer. Biochemical Soc Trans. 2014;42:1349–1355.

    CAS  Google Scholar 

  9. 9.

    Dummler B, Hemmings BA. Physiological roles of PKB/Akt isoforms in development and disease. Biochemical Soc Trans. 2007;35:231–5.

    CAS  Google Scholar 

  10. 10.

    Dummler B, Tschopp O, Hynx D, Yang ZZ, Dirnhofer S, Hemmings BA. Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol Cell Biol. 2006;26:8042–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419. PMID: 25613900.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Cohen MM Jr. The AKT genes and their roles in various disorders. Am J Med Genet Part A. 2013;161A:2931–7.

    PubMed  Google Scholar 

  13. 13.

    George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004;304:1325–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Boland E, Clayton-Smith J, Woo VG, McKee S, Manson FD, Medne L, et al. Mapping of deletion and translocation breakpoints in 1q44 implicates the serine/threonine kinase AKT3 in postnatal microcephaly and agenesis of the corpus callosum. Am J Hum Genet. 2007;81:292–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Ballif BC, Rosenfeld JA, Traylor R, Theisen A, Bader PI, Ladda RL, et al. High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44. Hum Genet. 2012;131:145–56.

    CAS  PubMed  Google Scholar 

  16. 16.

    Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Google Scholar 

  17. 17.

    Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001;292:1728–31.

    CAS  PubMed  Google Scholar 

  18. 18.

    Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Investig. 2003;112:197–208.

    CAS  PubMed  Google Scholar 

  19. 19.

    Yang ZZ, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, et al. Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem. 2003;278:32124–31.

    CAS  PubMed  Google Scholar 

  20. 20.

    Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS, et al. Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol. 2005;25:1869–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Tschopp O, Yang ZZ, Brodbeck D, Dummler BA, Hemmings-Mieszczak M, Watanabe T, et al. Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis. Development. 2005;132:2943–54.

    CAS  PubMed  Google Scholar 

  22. 22.

    Howell KR, Floyd K, Law AJ. PKBgamma/AKT3 loss-of-function causes learning and memory deficits and deregulation of AKT/mTORC2 signaling: relevance for schizophrenia. PLoS ONE. 2017;12:e0175993.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Diez H, Garrido JJ, Wandosell F. Specific roles of Akt iso forms in apoptosis and axon growth regulation in neurons. PloS ONE. 2012;7:e32715.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lai WS, Xu B, Westphal KG, Paterlini M, Olivier B, Pavlidis P, et al. Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci USA. 2006;103:16906–11.

    CAS  PubMed  Google Scholar 

  25. 25.

    Chang CY, Chen YW, Wang TW, Lai WS. Akting up in the GABA hypothesis of schizophrenia: Akt1 deficiency modulates GABAergic functions and hippocampus-dependent functions. Sci Rep. 2016;6:33095. PMID: 27615800; PMCID: PMC5018883.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet. 2004;36:131–7.

    CAS  PubMed  Google Scholar 

  27. 27.

    Balu DT, Carlson GC, Talbot K, Kazi H, Hill-Smith TE, Easton RM, et al. Akt1 deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus. 2012;22:230–40.

    CAS  PubMed  Google Scholar 

  28. 28.

    Huang CH, Pei JC, Luo DZ, Chen C, Chen YW, Lai WS. Investigation of gene effects and epistatic interactions between Akt1 and neuregulin 1 in the regulation of behavioral phenotypes and social functions in genetic mouse models of schizophrenia. Front Behav Neurosci. 2014;8:455.

    PubMed  Google Scholar 

  29. 29.

    Beaulieu JM. A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci: JPN. 2012;37:7–16.

    PubMed  Google Scholar 

  30. 30.

    Law AJ, Wang Y, Sei Y, O’Donnell P, Piantadosi P, Papaleo F, et al. Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110delta inhibition as a potential therapeutic strategy. Proc Natl Acad Sci USA. 2012;109:12165–70.

    CAS  PubMed  Google Scholar 

  31. 31.

    Papaleo F, Yang F, Paterson C, Palumbo S, Carr GV, Wang Y, et al. Behavioral, neurophysiological, and synaptic impairment in a transgenic neuregulin1 (NRG1-IV) murine schizophrenia model. J Neurosci. 2016;36:4859–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Leibrock C, Ackermann TF, Hierlmeier M, Lang F, Borgwardt S, Lang UE. Akt2 deficiency is associated with anxiety and depressive behavior in mice. Cell Physiol Biochem. 2013;32:766–77.

    CAS  PubMed  Google Scholar 

  33. 33.

    Levenga J, Wong H, Milstead RA, Keller BN, LaPlante LE, Hoeffer CA. AKT isoforms have distinct hippocampal expression and roles in synaptic plasticity. Elife. 2017;6:e30640.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Engeli L, Delahaye M, Borgwart S, Gallinat J, Muller D, Walter M, et al. Akt2 gene is associated with anxiety and neuroticism in humans. J Vasc Med Surg. 2014;2:141.

    Google Scholar 

  35. 35.

    Henderson ND, Turri MG, DeFries JC, Flint J. QTL analysis of multiple behavioral measures of anxiety in mice. Behav Genet. 2004;34:267–93.

    PubMed  Google Scholar 

  36. 36.

    Thiselton DL, Vladimirov VI, Kuo PH, McClay J, Wormley B, Fanous A, et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry. 2008;63:449–57.

    CAS  PubMed  Google Scholar 

  37. 37.

    Barker GR, Bird F, Alexander V, Warburton EC. Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci. 2007;27:2948–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Barker GR, Warburton EC. When is the hippocampus involved in recognition memory? J Neurosci. 2011;31:10721–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 2004;3:287–302.

    CAS  PubMed  Google Scholar 

  40. 40.

    Lesuisse C, Martin LJ. Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death. J Neurobiol. 2002;51:9–23.

    PubMed  Google Scholar 

  41. 41.

    Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 2002;20:87–90.

    CAS  PubMed  Google Scholar 

  42. 42.

    Garcia BG, Wei Y, Moron JA, Lin RZ, Javitch JA, Galli A. Akt is essential for insulin modulation of amphetamine-induced human dopamine transporter cell-surface redistribution. Mol Pharmacol. 2005;68:102–9.

    CAS  PubMed  Google Scholar 

  43. 43.

    Goosens KA, Maren S. Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn Mem. 2001;8:148–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Quirk GJ, Likhtik E, Pelletier JG, Pare D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci. 2003;23:8800–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Kennedy PJ, Shapiro ML. Retrieving memories via internal context requires the hippocampus. J Neurosci. 2004;24:6979–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Paterson C, Law AJ. Transient overexposure of neuregulin 3 during early postnatal development impacts selective behaviors in adulthood. PLoS ONE. 2014;9:e104172.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Schulz PE, Cook EP, Johnston D. Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci. 1994;14:5325–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Alberto CO, Hirasawa M. AMPA receptor-mediated miniature EPSCs have heterogeneous time courses in orexin neurons. Biochemical Biophys Res Commun. 2010;400:707–12.

    CAS  Google Scholar 

  49. 49.

    Queenan BN, Lee KJ, Pak DT. Wherefore art thou, homeo(stasis)? Functional diversity in homeostatic synaptic plasticity. Neural Plast. 2012;2012:718203.

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Beaulieu JM, Gainetdinov RR, Caron MG. Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharm Toxicol. 2009;49:327–47.

    CAS  Google Scholar 

  51. 51.

    Williams JM, Owens WA, Turner GH, Saunders C, Dipace C, Blakely RD, et al. Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine. PLoS Biol. 2007;5:e274.

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Speed NK, Matthies HJ, Kennedy JP, Vaughan RA, Javitch JA, Russo SJ, et al. Akt-dependent and isoform-specific regulation of dopamine transporter cell surface expression. ACS Chem Neurosci. 2010;1:476–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Alvarez RP, Biggs A, Chen G, Pine DS, Grillon C. Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. J Neurosci. 2008;28:6211–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Moustafa AA, Gilbertson MW, Orr SP, Herzallah MM, Servatius RJ, Myers CE. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals. Brain Cognition. 2013;81:29–43.

    PubMed  Google Scholar 

  55. 55.

    Bergeron Y, Bureau G, Laurier-Laurin ME, Asselin E, Massicotte G, Cyr M. Genetic deletion of Akt3 induces an endophenotype reminiscent of psychiatric manifestations in mice. Front Mol Neurosci. 2017;10:102.

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89:37–53.

    CAS  PubMed  Google Scholar 

  58. 58.

    Gururajan A, van den Buuse M. Is the mTOR-signalling cascade disrupted in Schizophrenia? J Neurochemistry. 2014;129:377–87.

    CAS  Google Scholar 

  59. 59.

    Lipton JO, Sahin M. The neurology of mTOR. Neuron. 2014;84:275–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Lloyd BA, Hake HS, Ishiwata T, Farmer CE, Loetz EC, Fleshner M, et al. Exercise increases mTOR signaling in brain regions involved in cognition and emotional behavior. Behav Brain Res. 2017;323:56–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Glover EM, Ressler KJ, Davis M. Differing effects of systemically administered rapamycin on consolidation and reconsolidation of context vs. cued fear memories. Learn Mem. 2010;17:577–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33:67–75.

    CAS  PubMed  Google Scholar 

  63. 63.

    Mac Callum PE, Hebert M, Adamec RE, Blundell J. Systemic inhibition of mTOR kinase via rapamycin disrupts consolidation and reconsolidation of auditory fear memory. Neurobiol Learn Mem. 2014;112:176–185.

    Google Scholar 

  64. 64.

    Raab-Graham KF, Niere F. mTOR referees memory and disease through mRNA repression and competition. FEBS Lett. 2017;591:1540–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Fraser MM, Bayazitov IT, Zakharenko SS, Baker SJ. Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities. Neuroscience. 2008;151:476–88.

    CAS  PubMed  Google Scholar 

  66. 66.

    Crino PB. mTOR: a pathogenic signaling pathway in developmental brain malformations. Trends Mol Med. 2011;17:734–42.

    CAS  PubMed  Google Scholar 

  67. 67.

    Weston MC, Chen H, Swann JW. Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission. J Neurosci. 2012;32:11441–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Rozengurt E, Soares HP, Sinnet-Smith J. Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance. Mol Cancer Ther. 2014;13:2477–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 2005;65:7052–8.

    CAS  PubMed  Google Scholar 

  70. 70.

    Lane HA, Breuleux M. Optimal targeting of the mTORC1 kinase in human cancer. Curr Opin Cell Biol. 2009;21:219–29.

    CAS  PubMed  Google Scholar 

  71. 71.

    Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107:519–27.

    CAS  PubMed  Google Scholar 

  72. 72.

    Freland L, Beaulieu JM. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci. 2012;5:14.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res. 2007;32:577–95.

    CAS  Google Scholar 

  74. 74.

    Mines MA, Yuskaitis CJ, King MK, Beurel E, Jope RS. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS ONE. 2010;5:e9706.

    PubMed  PubMed Central  Google Scholar 

Download references


We would like to thank Dr. Daniel Weinberger of the Lieber Institute for Brain Development and previously the NIMH Intramural Research Program, for additional resource support at the NIMH IRP. We thank Dr. Wenwei Huang, Dr. Craig Thomas and the National Center for Advancing Translational Sciences, National Institutes of Health for the synthesis of the IC87114 compound. All the work presented in this study was conducted at the NIMH Intramural Research Program, Bethesda, MD and the University of Colorado, CO, USA.


This work was supported by the National Institutes of Mental Health under Award Number R01MH103716 (AJL), and previously by funds from the National Institutes of Mental Health, Intramural Research Program (AJL). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information




SP and CP performed experiments, performed data analysis and authored manuscript text; FY performed electrophysiology experiments, performed data analysis and revised manuscript drafts; VLH performed cell culture experiments and performed data analysis; AJL conceived and designed the study, performed data analysis, statistical analysis, authored manuscript text, revised manuscript drafts, and supervised this work.

Corresponding author

Correspondence to Amanda J. Law.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palumbo, S., Paterson, C., Yang, F. et al. PKBβ/AKT2 deficiency impacts brain mTOR signaling, prefrontal cortical physiology, hippocampal plasticity and select murine behaviors. Mol Psychiatry 26, 411–428 (2021).

Download citation

Further reading


Quick links