Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

tDCS peripheral nerve stimulation: a neglected mode of action?

Abstract

Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation method widely used by neuroscientists and clinicians for research and therapeutic purposes. tDCS is currently under investigation as a treatment for a range of psychiatric disorders. Despite its popularity, a full understanding of tDCS’s underlying neurophysiological mechanisms is still lacking. tDCS creates a weak electric field in the cerebral cortex which is generally assumed to cause the observed effects. Interestingly, as tDCS is applied directly on the skin, localized peripheral nerve endings are exposed to much higher electric field strengths than the underlying cortices. Yet, the potential contribution of peripheral mechanisms in causing tDCS’s effects has never been systemically investigated. We hypothesize that tDCS induces arousal and vigilance through peripheral mechanisms. We suggest that this may involve peripherally-evoked activation of the ascending reticular activating system, in which norepinephrine is distributed throughout the brain by the locus coeruleus. Finally, we provide suggestions to improve tDCS experimental design beyond the standard sham control, such as topical anesthetics to block peripheral nerves and active controls to stimulate non-target areas. Broad adoption of these measures in all tDCS experiments could help disambiguate peripheral from true transcranial tDCS mechanisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison of the tDCS transcranial and transcutaneous mechanisms.
Fig. 2: TDCS transcutaneous mechanism.

References

  1. 1.

    Shiozawa P, et al. Transcranial direct current stimulation for major depression: an updated systematic review and meta-analysis. Int J Neuropsychopharmacol. 2014;17:1443–52.

    Article  Google Scholar 

  2. 2.

    Agarwal SM, et al. Transcranial direct current stimulation in schizophrenia. Clin Psychopharmacol Neurosci. 2013;11:118–25.

    Article  Google Scholar 

  3. 3.

    Brunelin J, et al. Transcranial direct current stimulation for obsessive-compulsive disorder: a systematic review. Brain Sci. 2018;8:37.

    Article  Google Scholar 

  4. 4.

    Berryhill ME, Peterson DJP, Jones KTP, Stephens JAM. Hits and misses: leveraging tDCS to advance cognitive research. Front Psychol. 2014;5:800.

    Article  Google Scholar 

  5. 5.

    Salling MC, Martinez D. Brain stimulation in addiction. Neuropsychopharmacology. 2016;41:2798–809.

    Article  Google Scholar 

  6. 6.

    Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018. https://doi.org/10.1038/s41593-017-0054-4

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rahman A, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol. 2013;591:2563–78.

    CAS  Article  Google Scholar 

  8. 8.

    Valero-Cabré A, Amengual JL, Stengel C, Pascual-Leone A, Coubard OA. Transcranial magnetic stimulation in basic and clinical neuroscience: A comprehensive review of fundamental principles and novel insights. Neurosci Biobehav Rev. 2017. https://doi.org/10.1016/j.neubiorev.2017.10.006

    Article  PubMed  Google Scholar 

  9. 9.

    Tavakoli AV, Yun K. Transcranial alternating current stimulation (tACS) mechanisms and protocols. Front Cell Neurosci. 2017. https://doi.org/10.3389/fncel.2017.00214

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Legon W, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17:322–9.

    CAS  Article  Google Scholar 

  11. 11.

    Conde V, et al. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage. 2019. https://doi.org/10.1016/j.neuroimage.2018.10.052

    Article  PubMed  Google Scholar 

  12. 12.

    Siebner HR, Conde V, Tomasevic L, Thielscher A, Bergmann TO. Distilling the essence of TMS-evoked EEG potentials (TEPs): a call for securing mechanistic specificity and experimental rigor. Brain Stimul. 2019. https://doi.org/10.1016/j.brs.2019.03.076

    Article  PubMed  Google Scholar 

  13. 13.

    Asamoah B, Khatoun A, Mc Laughlin M. tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat Commun. 2019;10:266.

    Article  Google Scholar 

  14. 14.

    Adair D, et al. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul. 2020. https://doi.org/10.1016/j.brs.2020.02.019

    Article  PubMed  Google Scholar 

  15. 15.

    Chase HW, Boudewyn MA, Carter CS, Phillips ML. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation. Mol Psychiatry. 2020;25:397–407.

    Article  Google Scholar 

  16. 16.

    Opitz A, Paulus W, Will S, Antunes A, Thielscher A. Determinants of the electric field during transcranial direct current stimulation. Neuroimage. 2015;109:140–50.

    Article  Google Scholar 

  17. 17.

    Liu A, et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun. 2018;9:5092.

    Article  Google Scholar 

  18. 18.

    Rampersad SM, et al. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng. 2014;22:441–52.

    Article  Google Scholar 

  19. 19.

    So PPM, Stuchly MA, Nyenhuis JA. Peripheral nerve stimulation by gradient switching fields in magnetic resonance imaging. IEEE Trans Biomed Eng. 2004. https://doi.org/10.1109/TBME.2004.834251

    Article  PubMed  Google Scholar 

  20. 20.

    Kessler SK, Turkeltaub PE, Benson JG, Hamilton RH. Differences in the experience of active and sham transcranial direct current stimulation. Brain Stimul. 2012. https://doi.org/10.1016/j.brs.2011.02.007

    Article  PubMed  Google Scholar 

  21. 21.

    Fanselow EE. Central mechanisms of cranial nerve stimulation for epilepsy. Surg Neurol Int. 2012;3:S247–54.

    Article  Google Scholar 

  22. 22.

    Mercante B, et al. Anatomo-physiologic basis for auricular stimulation. Med Acupunct 2018;30:141–50.

    Article  Google Scholar 

  23. 23.

    Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009;2:215–.e3.

    Article  Google Scholar 

  24. 24.

    Romero Lauro LJ, et al. TDCS increases cortical excitability: direct evidence from TMS-EEG. Cortex. 2014;58:99–111.

    Article  Google Scholar 

  25. 25.

    Chakraborty D, Truong DQ, Bikson M, Kaphzan H. Neuromodulation of axon terminals. Cereb Cortex. 2018;28:2786–94.

    Article  Google Scholar 

  26. 26.

    Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimul. 2017;10:51–8.

    Article  Google Scholar 

  27. 27.

    Kronberg, G., Rahman, A., Sharma, M., Bikson, M. & Parra, L. C. Direct current stimulation boosts hebbian plasticity in vitro. Brain Stimul. 2020. https://doi.org/10.1016/j.brs.2019.10.014

  28. 28.

    Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci. 2010;30:15067–79.

    CAS  Article  Google Scholar 

  29. 29.

    Tang YY, Rothbart MK, Posner MI. Neural correlates of establishing, maintaining, and switching brain states. Trends Cogn Sci. 2012;16:330–7.

    Article  Google Scholar 

  30. 30.

    Gellner A-K, Reis J, Fritsch B. Glia: a neglected player in non-invasive direct current brain stimulation. Front Cell Neurosci. 2016;10:188.

    Article  Google Scholar 

  31. 31.

    Hoare JI, Rajnicek AM, McCaig CD, Barker RN, Wilson HM. Electric fields are novel determinants of human macrophage functions. J Leukoc Biol. 2016;99:1141–51.

    CAS  Article  Google Scholar 

  32. 32.

    Cohen-Gadol A, Kemp W III, Tubbs RS. The innervation of the scalp: a comprehensive review including anatomy, pathology, and neurosurgical correlates. Surg Neurol Int. 2011;2:178.

    Article  Google Scholar 

  33. 33.

    Rea P. Clinical anatomy of the cranial nerves. 2014. https://doi.org/10.1016/C2013-0-19192-1

  34. 34.

    Slavin KV. History of peripheral nerve stimulation. In: Peripheral Nerve Stimulation. Vol. 24, pp. 1–15. KARGER, 2011

  35. 35.

    Busch V, et al. Functional connectivity between trigeminal and occipital nerves revealed by occipital nerve blockade and nociceptive blink reflexes. Cephalalgia. 2006. https://doi.org/10.1111/j.1468-2982.2005.00992.x

    Article  PubMed  Google Scholar 

  36. 36.

    Monkhouse S. Cranial nerves: functional anatomy. 2005. https://doi.org/10.1017/CBO9780511543524

  37. 37.

    Tyler WJ, et al. Transdermal neuromodulation of noradrenergic activity suppresses psychophysiological and biochemical stress responses in humans. Sci Rep. 2015;5:1–17.

    Article  Google Scholar 

  38. 38.

    Schwartz MD, Kilduff TS. The neurobiology of sleep and wakefulness. Psychiatr Clin North Am. 2015;38:615–44.

    Article  Google Scholar 

  39. 39.

    Kinomura S, Larsson J, Gulyás B & Roland PE. Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science. 1996. https://doi.org/10.1126/science.271.5248.512

  40. 40.

    Couto LB, et al. Descriptive and functional neuroanatomy of locus coeruleus-noradrenaline-containing neurons involvement in bradykinin-induced antinociception on principal sensory trigeminal nucleus. J Chem Neuroanat. 2006;32:28–45.

    CAS  Article  Google Scholar 

  41. 41.

    Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10:211–23.

    CAS  Article  Google Scholar 

  42. 42.

    Kuo H-I, et al. Acute and chronic noradrenergic effects on cortical excitability in healthy humans. Int J Neuropsychopharmacol. 2017;20:634–43.

    CAS  Article  Google Scholar 

  43. 43.

    Harley CW. Norepinephrine and dopamine as learning signals. Neural Plast. 2004;11:191–204.

    CAS  Article  Google Scholar 

  44. 44.

    Wagatsuma A, et al. Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context. Proc Natl Acad Sci USA. 2017;115:E310–6.

    Article  Google Scholar 

  45. 45.

    Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci USA. 2016;113:14835–40.

    CAS  Article  Google Scholar 

  46. 46.

    Kuo H-I, et al. Acute and chronic effects of noradrenergic enhancement on transcranial direct current stimulation-induced neuroplasticity in humans. J Physiol. 2017;595:1305–14.

    CAS  Article  Google Scholar 

  47. 47.

    Monai H, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun. 2016;7:11100.

    CAS  Article  Google Scholar 

  48. 48.

    Joos K, De Ridder D, Van De Heyning P & Vanneste S. Polarity specific suppression effects of transcranial direct current stimulation for tinnitus. Neural Plast. 2014. https://doi.org/10.1155/2014/930860

  49. 49.

    Reis J, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci USA. 2009. https://doi.org/10.1073/pnas.0805413106

    Article  PubMed  Google Scholar 

  50. 50.

    Matsushita R, Andoh J, Zatorre RJ. Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning. Front. Neurosci. 2015. https://doi.org/10.3389/fnins.2015.00174

  51. 51.

    Hopp FA, Zuperku EJ, Coon RL, Kampine JP. Effect of anodal blockade of myelinated fibers on vagal C-fiber afferents. Am J Physiol Integr Comp Physiol. 1980;239:R454–62.

    CAS  Article  Google Scholar 

  52. 52.

    Berger JJ, Gravenstein JS, Munson ES. Electrode polarity and peripheral nerve stimulation. Anesthesiology. 1982;56:402–4.

    CAS  Article  Google Scholar 

  53. 53.

    Bolzoni F, et al. Direct current stimulation modulates the excitability of the sensory and motor fibres in the human posterior tibial nerve, with a long-lasting effect on the H-reflex. Eur J Neurosci. 2017;46:2499–506.

    Article  Google Scholar 

  54. 54.

    Podda MV, et al. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Sci Rep. 2016;6:1–19.

    Article  Google Scholar 

  55. 55.

    Kim MS, et al. Repeated anodal transcranial direct current stimulation induces neural plasticity-associated gene expression in the rat cortex and hippocampus. Restor Neurol Neurosci. 2017;35:137–46.

    CAS  PubMed  Google Scholar 

  56. 56.

    Yu TH, Wu YJ, Chien ME, Hsu KS. Transcranial direct current stimulation induces hippocampal metaplasticity mediated by brain-derived neurotrophic factor. Neuropharmacology. 2019;144:358–67.

    CAS  Article  Google Scholar 

  57. 57.

    Kumar M, Chawla R, Goyal M. Topical anesthesia. J Anaesthesiol Clin Pharmacol. 2015;31:450.

    CAS  Article  Google Scholar 

  58. 58.

    Lambertz CK, Johnson CJ, Montgomery PG, Maxwell JR & Fry SJ. Toxicity of topical lidocaine applied to the breasts to reduce discomfort during screening mammography. J Anaesthesiol Clin Pharmacol. 2012. https://doi.org/10.4103/0970-9185.94859

  59. 59.

    Minhas P, et al. Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. J Neurosci Methods 2010. https://doi.org/10.1016/j.jneumeth.2010.05.007

  60. 60.

    Alam M, Truong DQ, Khadka N & Bikson M. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Phys Med Biol. 2016. https://doi.org/10.1088/0031-9155/61/12/4506

Download references

Author information

Affiliations

Authors

Contributions

LvB wrote the article. SK, AK, and BA contributed to discussing, editing, and writing the article. MMcL formulated the central hypothesis in the article and contributed to discussing, editing, and writing it.

Corresponding author

Correspondence to Myles Mc Laughlin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Boekholdt, L., Kerstens, S., Khatoun, A. et al. tDCS peripheral nerve stimulation: a neglected mode of action?. Mol Psychiatry 26, 456–461 (2021). https://doi.org/10.1038/s41380-020-00962-6

Download citation

Further reading

Search

Quick links