Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal

Abstract

Sleep abnormalities are often a prominent contributor to withdrawal symptoms following chronic drug use. Notably, rapid eye movement (REM) sleep regulates emotional memory, and persistent REM sleep impairment after cocaine withdrawal negatively impacts relapse-like behaviors in rats. However, it is not understood how cocaine experience may alter REM sleep regulatory machinery, and what may serve to improve REM sleep after withdrawal. Here, we focus on the melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH), which regulate REM sleep initiation and maintenance. Using adult male Sprague–Dawley rats trained to self-administer intravenous cocaine, we did transcriptome profiling of LH MCH neurons after long-term withdrawal using RNA-sequencing, and performed functional assessment using slice electrophysiology. We found that 3 weeks after withdrawal from cocaine, LH MCH neurons exhibit a wide range of gene expression changes tapping into cell membrane signaling, intracellular signaling, and transcriptional regulations. Functionally, they show reduced membrane excitability and decreased glutamatergic receptor activity, consistent with increased expression of voltage-gated potassium channel gene Kcna1 and decreased expression of metabotropic glutamate receptor gene Grm5. Finally, chemogenetic or optogenetic stimulations of LH MCH neural activity increase REM sleep after long-term withdrawal with important differences. Whereas chemogenetic stimulation promotes both wakefulness and REM sleep, optogenetic stimulation of these neurons in sleep selectively promotes REM sleep. In summary, cocaine exposure persistently alters gene expression profiles and electrophysiological properties of LH MCH neurons. Counteracting cocaine-induced hypoactivity of these neurons selectively in sleep enhances REM sleep quality and quantity after long-term withdrawal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cocaine experience persistently alters gene expression in LH MCH neurons.
Fig. 2: Cocaine experience persistently reduces membrane excitability and impairs glutamate receptor activity in LH MCH neurons.
Fig. 3: Chemogenetic activation of LH MCH neurons during the light (inactive) phase promotes both wakefulness and REM sleep after long-term cocaine withdrawal.
Fig. 4: In vivo, closed-loop, optogenetic stimulation system for selective stimulation of LH MCH neurons during sleep.
Fig. 5: Optogenetic activation of LH MCH neurons selectively during sleep increases REM sleep after long-term cocaine withdrawal.

Similar content being viewed by others

References

  1. Angarita GA, Emadi N, Hodges S, Morgan PT. Sleep abnormalities associated with alcohol, cannabis, cocaine, and opiate use: a comprehensive review. Addict Sci Clin Pr. 2016;11:9.

    Article  Google Scholar 

  2. Jaehne A, Unbehaun T, Feige B, Cohrs S, Rodenbeck A, Schutz AL, et al. Sleep changes in smokers before, during and 3 months after nicotine withdrawal. Addict Biol. 2015;20:747–55.

    Article  CAS  PubMed  Google Scholar 

  3. Angarita GA, Canavan SV, Forselius E, Bessette A, Pittman B, Morgan PT. Abstinence-related changes in sleep during treatment for cocaine dependence. Drug alcohol Depend. 2014;134:343–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kowatch RA, Schnoll SS, Knisely JS, Green D, Elswick RK. Electroencephalographic sleep and mood during cocaine withdrawal. J Addictive Dis. 1992;11:21–45.

    Article  CAS  Google Scholar 

  5. Matuskey D, Pittman B, Forselius E, Malison RT, Morgan PT. A multistudy analysis of the effects of early cocaine abstinence on sleep. Drug Alcohol Depend. 2011;115:62–6.

    Article  CAS  PubMed  Google Scholar 

  6. Chen B, Wang Y, Liu X, Liu Z, Dong Y, Huang YH. Sleep Regulates Incubation of Cocaine Craving. J Neurosci. 2015;35:13300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Logan RW, Hasler BP, Forbes EE, Franzen PL, Torregrossa MM, Huang YH, et al. Impact of Sleep and Circadian Rhythms on Addiction Vulnerability in Adolescents. Biol Psychiatry. 2018;83:987–96.

    Article  PubMed  Google Scholar 

  8. Malcolm R, Myrick LH, Veatch LM, Boyle E, Randall PK. Self-reported sleep, sleepiness, and repeated alcohol withdrawals: a randomized, double blind, controlled comparison of lorazepam vs gabapentin. J Clin Sleep Med. 2007;3:24–32.

    PubMed  Google Scholar 

  9. Puhl MD, Boisvert M, Guan Z, Fang J, Grigson PS. A novel model of chronic sleep restriction reveals an increase in the perceived incentive reward value of cocaine in high drug-taking rats. Pharmacol, Biochem, Behav. 2013;109:8–15.

    Article  CAS  Google Scholar 

  10. Puhl MD, Fang J, Grigson PS. Acute sleep deprivation increases the rate and efficiency of cocaine self-administration, but not the perceived value of cocaine reward in rats. Pharmacol, Biochem, Behav. 2009;94:262–70.

    Article  CAS  Google Scholar 

  11. Roehrs T, Johanson CE, Meixner R, Turner L, Roth T. Reinforcing and subjective effects of methylphenidate: dose and time in bed. Exp Clin Psychopharmacol. 2004;12:180–9.

    Article  CAS  PubMed  Google Scholar 

  12. Teplin D, Raz B, Daiter J, Varenbut M, Tyrrell M. Screening for substance use patterns among patients referred for a variety of sleep complaints. Am J drug alcohol Abus. 2006;32:111–20.

    Article  Google Scholar 

  13. Abel T, Havekes R, Saletin JM, Walker MP. Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol. 2013;23:R774–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baran B, Pace-Schott EF, Ericson C, Spencer RM. Processing of emotional reactivity and emotional memory over sleep. J Neurosci. 2012;32:1035–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gujar N, McDonald SA, Nishida M, Walker MP. A role for REM sleep in recalibrating the sensitivity of the human brain to specific emotions. Cereb Cortex. 2011;21:115–23.

    Article  PubMed  Google Scholar 

  16. Siegel JM. Clues to the functions of mammalian sleep. Nature. 2005;437:1264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siegel JM. REM sleep: a biological and psychological paradox. Sleep Med Rev. 2011;15:139–42.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vyazovskiy VV, Delogu A. NREM and REM sleep: complementary roles in recovery after wakefulness. Neuroscientist. 2014;20:203–19.

    Article  PubMed  Google Scholar 

  19. Broberger C, De Lecea L, Sutcliffe JG, Hokfelt T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol. 1998;402:460–74.

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun. 2016;7:11395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haemmerle CA, Campos AM, Bittencourt JC. Melanin-concentrating hormone inputs to the nucleus accumbens originate from distinct hypothalamic sources and are apposed to GABAergic and cholinergic cells in the Long-Evans rat brain. Neuroscience. 2015;289:392–405.

    Article  CAS  PubMed  Google Scholar 

  22. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci. 2013;16:1637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, et al. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol. 1992;319:218–45.

    Article  CAS  PubMed  Google Scholar 

  24. Lagos P, Torterolo P, Jantos H, Monti JM. Immunoneutralization of melanin-concentrating hormone (MCH) in the dorsal raphe nucleus: effects on sleep and wakefulness. Brain Res. 2011;1369:112–8.

    Article  CAS  PubMed  Google Scholar 

  25. Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, et al. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression. Front Neurosci. 2015;9:475.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Elias CF, Lee CE, Kelly JF, Ahima RS, Kuhar M, Saper CB, et al. Characterization of CART neurons in the rat and human hypothalamus. J Comp Neurol. 2001;432:1–19.

    Article  CAS  PubMed  Google Scholar 

  27. Harthoorn LF, Sane A, Nethe M, Van Heerikhuize JJ. Multi-transcriptional profiling of melanin-concentrating hormone and orexin-containing neurons. Cell Mol Neurobiol. 2005;25:1209–23.

    Article  PubMed  Google Scholar 

  28. Guyon A, Conductier G, Rovere C, Enfissi A, Nahon JL. Melanin-concentrating hormone producing neurons: activities and modulations. Peptides. 2009;30:2031–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kong D, Vong L, Parton LE, Ye C, Tong Q, Hu X, et al. Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab. 2010;12:545–52.

    Article  CAS  PubMed  Google Scholar 

  30. Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci USA. 2009;106:2418–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blanco-Centurion C, Luo S, Spergel DJ, Vidal-Ortiz A, Oprisan SA, Van den Pol AN, et al. Dynamic Network Activation of Hypothalamic MCH Neurons in REM Sleep and Exploratory Behavior. J Neurosci. 2019;39:4986–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fraigne JJ, Peever JH. Melanin-concentrating hormone neurons promote and stabilize sleep. Sleep. 2013;36:1767–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, et al. Optogenetic stimulation of MCH neurons increases sleep. J Neurosci. 2013;33:10257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, et al. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci. 2014;34:6896–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kitka T, Adori C, Katai Z, Vas S, Molnar E, Papp RS, et al. Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation. Neurochem Int. 2011;59:686–94.

    Article  CAS  PubMed  Google Scholar 

  36. Modirrousta M, Mainville L, Jones BE. Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci. 2005;21:2807–16.

    Article  PubMed  Google Scholar 

  37. Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, et al. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 2003;4:19.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Krueger JM, Obal F. A neuronal group theory of sleep function. J Sleep Res. 1993;2:63–9.

    Article  CAS  PubMed  Google Scholar 

  39. Winters BD, Huang YH, Dong Y, Krueger JM. Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex. Brain Res. 2011;1420:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Z, Wang Y, Cai L, Li Y, Chen B, Dong Y, et al. Prefrontal Cortex to Accumbens Projections in Sleep Regulation of Reward. J Neurosci. 2016;36:7897–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee BR, Ma YY, Huang YH, Wang X, Otaka M, Ishikawa M, et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci. 2013;16:1644–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma YY, Lee BR, Wang X, Guo C, Liu L, Cui R, et al. Bidirectional Modulation of Incubation of Cocaine Craving by Silent Synapse-Based Remodeling of Prefrontal Cortex to Accumbens Projections. Neuron. 2014;83:1453–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Liu Z, Cai L, Guo R, Dong Y, Huang YH. A Critical Role of Basolateral Amygdala-to-Nucleus Accumbens Projection in Sleep Regulation of Reward Seeking. Biol Psychiatry. 2019;87:954–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Garrido-Gil P, Fernandez-Rodriguez P, Rodriguez-Pallares J, Labandeira-Garcia JL. Laser capture microdissection protocol for gene expression analysis in the brain. Histochem Cell Biol. 2017;148:299–311.

    Article  CAS  PubMed  Google Scholar 

  45. Lin LC, Sibille E. Somatostatin, neuronal vulnerability and behavioral emotionality. Mol Psychiatry. 2015;20:377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Huang YH, Lin Y, Mu P, Lee BR, Brown TE, Wayman G, et al. In vivo cocaine experience generates silent synapses. Neuron. 2009;63:40–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang YH, Ishikawa M, Lee BR, Nakanishi N, Schluter OM, Dong Y. Searching for presynaptic NMDA receptors in the nucleus accumbens. J Neurosci. 2011;31:18453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Suska A, Lee BR, Huang YH, Dong Y, Schluter OM. Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine. Proc Natl Acad Sci USA. 2013;110:713–8.

    Article  CAS  PubMed  Google Scholar 

  50. Ghasemi A, Zahediasl S. Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab. 2012;10:486–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cvetkovic V, Brischoux F, Jacquemard C, Fellmann D, Griffond B, Risold PY. Characterization of subpopulations of neurons producing melanin-concentrating hormone in the rat ventral diencephalon. J Neurochem. 2004;91:911–9.

    Article  CAS  PubMed  Google Scholar 

  52. Croizier S, Franchi-Bernard G, Colard C, Poncet F, La Roche A, Risold PY. A comparative analysis shows morphofunctional differences between the rat and mouse melanin-concentrating hormone systems. PloS ONE. 2010;5:e15471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Broberger C. Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res. 1999;848:101–13.

    Article  CAS  PubMed  Google Scholar 

  54. Del Cid-Pellitero E, Jones BE. Immunohistochemical evidence for synaptic release of GABA from melanin-concentrating hormone containing varicosities in the locus coeruleus. Neuroscience. 2012;223:269–76.

    Article  PubMed  CAS  Google Scholar 

  55. Meister B. Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav. 2007;92:263–71.

    Article  CAS  PubMed  Google Scholar 

  56. Mickelsen LE, Kolling FWT, Chimileski BR, Fujita A, Norris C, Chen K, et al. Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro. 2017;4:ENEURO.0013–17.2017.

    Article  Google Scholar 

  57. Marston OJ, Hurst P, Evans ML, Burdakov DI, Heisler LK. Neuropeptide Y cells represent a distinct glucose-sensing population in the lateral hypothalamus. Endocrinology. 2011;152:4046–52.

    Article  CAS  PubMed  Google Scholar 

  58. Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol. 2016;594:6443–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The lateral hypothalamus: an uncharted territory for processing peripheral neurogenic inflammation. Front Neurosci. 2020;14:101.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Huang H, van den Pol AN. Rapid direct excitation and long-lasting enhancement of NMDA response by group I metabotropic glutamate receptor activation of hypothalamic melanin-concentrating hormone neurons. J Neurosci. 2007;27:11560–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roth BL. DREADDs for Neuroscientists. Neuron. 2016;89:683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grimm JW, Hope BT, Wise RA, Shaham Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature. 2001;412:141–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barson JR, Morganstern I, Leibowitz SF. Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int J Endocrinol. 2013;2013:983964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Dilsiz P, Aklan I, Sayar Atasoy N, Yavuz Y, Filiz G, Koksalar F, et al. MCH Neuron Activity Is Sufficient for Reward and Reinforces Feeding. Neuroendocrinology. 2020;110:258–70.

    Article  CAS  PubMed  Google Scholar 

  65. Noble EE, Hahn JD, Konanur VR, Hsu TM, Page SJ, Cortella AM, et al. Control of Feeding Behavior by Cerebral Ventricular Volume Transmission of Melanin-Concentrating Hormone. Cell Metab. 2018;28:55–68 e57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dackis CA, O’Brien CP. Cocaine dependence: the challenge for pharmacotherapy. Curr Opin Psychiatry. 2002;15:261–7.

    Article  Google Scholar 

  67. Morgan PT, Pace-Schott E, Pittman B, Stickgold R, Malison RT. Normalizing effects of modafinil on sleep in chronic cocaine users. Am J Psychiatry. 2010;167:331–40.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Benquet P, Gee CE, Gerber U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci. 2002;22:9679–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kovalevich J, Corley G, Yen W, Rawls SM, Langford D. Cocaine-induced loss of white matter proteins in the adult mouse nucleus accumbens is attenuated by administration of a beta-lactam antibiotic during cocaine withdrawal. Am J Pathol. 2012;181:1921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bannon M, Kapatos G, Albertson D. Gene expression profiling in the brains of human cocaine abusers. Addict Biol. 2005;10:119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bartzokis G, Beckson M, Lu PH, Edwards N, Bridge P, Mintz J. Brain maturation may be arrested in chronic cocaine addicts. Biol Psychiatry. 2002;51:605–11.

    Article  CAS  PubMed  Google Scholar 

  72. Nielsen DA, Huang W, Hamon SC, Maili L, Witkin BM, Fox RG, et al. Forced Abstinence from Cocaine Self-Administration is Associated with DNA Methylation Changes in Myelin Genes in the Corpus Callosum: a preliminary study. Front Psychiatry. 2012;3:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Narayana PA, Ahobila-Vajjula P, Ramu J, Herrera J, Steinberg JL, Moeller FG. Diffusion tensor imaging of cocaine-treated rodents. Psychiatry Res. 2009;171:242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Navarro AI, Mandyam CD. Protracted abstinence from chronic ethanol exposure alters the structure of neurons and expression of oligodendrocytes and myelin in the medial prefrontal cortex. Neuroscience. 2015;293:35–44.

    Article  CAS  PubMed  Google Scholar 

  75. Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci. 2014;8:244.

    PubMed  Google Scholar 

  76. Tsujino N, Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharm Rev. 2009;61:162–76.

    Article  CAS  PubMed  Google Scholar 

  77. Torterolo P, Lagos P, Monti JM. Melanin-concentrating hormone: a new sleep factor? Front Neurol. 2011;2:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reichelt AC, Westbrook RF, Morris MJ. Integration of reward signalling and appetite regulating peptide systems in the control of food-cue responses. Br J Pharm. 2015;172:5225–38.

    Article  CAS  Google Scholar 

  79. James MH, Stopper CM, Zimmer BA, Koll NE, Bowrey HE, Aston-Jones G. Increased Number and Activity of a Lateral Subpopulation of Hypothalamic Orexin/Hypocretin Neurons Underlies the Expression of an Addicted State in Rats. Biol Psychiatry. 2019;85:925–35.

    Article  CAS  PubMed  Google Scholar 

  80. van den Pol AN. Neuropeptide transmission in brain circuits. Neuron. 2012;76:98–115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Svensson E, Apergis-Schoute J, Burnstock G, Nusbaum MP, Parker D, Schioth HB. General Principles of Neuronal Co-transmission: insights from multiple model systems. Front Neural Circuits. 2018;12:117.

    Article  CAS  PubMed  Google Scholar 

  82. Nusbaum MP, Blitz DM, Marder E. Functional consequences of neuropeptide and small-molecule co-transmission. Nat Rev Neurosci. 2017;18:389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M. Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience. 2008;156:819–29.

    Article  CAS  PubMed  Google Scholar 

  84. Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, et al. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science. 2019;365:1308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Priyattam J. Shiromani for kindly providing us with the AAV5-MCHp-GFP and AAV5-MCHp-ChR2-EYFP constructs; Dr Oliver M. SchlĂĽter for advice on molecular cloning; Dr Ryan W. Logan for helpful discussions on transcriptome analysis; Dr John F. Enwright, Dominique Arion for technical guidance on laser microdissection; Wei Zong for transcriptome analysis technical support; Braden R Bubarth, Rachel L Hines, and Jake Minnick for help with rat behavioral trainings; Dr Zheng Liu for technical support with slice electrophysiology. Research reported in this publication was supported by the National Institutes of Health under Award Numbers DA043826 (YH), DA046491 (YH), AA028145 (YH), MH120066 (MLS), LM012752 (GCT), DA023206 (YD), DA040620 (YD), DA047861 (YD). Cocaine was supplied by the Drug Supply Program of NIH NIDA. Clozapine N-oxide was partly supplied by the Chemical Synthesis and Drug Supply Program of NIMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhua H. Huang.

Ethics declarations

Conflict of interest

Dr JF is the creator of SleepMaster software, and the owner of Biosoft Studio. All other authors declare no conflict of interest. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, R., Chen, B. et al. Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry 26, 3152–3168 (2021). https://doi.org/10.1038/s41380-020-00921-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00921-1

This article is cited by

Search

Quick links