Preliminary in vivo evidence of lower hippocampal synaptic density in cannabis use disorder

Abstract

Cannabis is one of the most commonly and widely used psychoactive drugs. The rates of cannabis misuse have been increasing. Therefore, understanding the effects of cannabis use on the brain is important. Adolescent and adult rodents exposed to repeated administration of cannabinoids show persistent microstructural changes in the hippocampus both pre- and post-synaptically. Whether similar alterations exist in human cannabis users, has not yet been demonstrated in vivo. Positron emission tomography (PET) and [11C]UCB-J, a radioligand for the synaptic vesicle glycoprotein 2A (SV2A), were used to study hippocampal synaptic integrity in vivo in an equal number (n = 12) of subjects with DSM-5 cannabis use disorder (CUD) and matched healthy controls (HC). Arterial sampling was used to measure plasma input function. [11C]UCB-J binding potential (BPND) was estimated using a one-tissue (1T) compartment model with centrum semiovale as the reference region. Hippocampal function was assessed using a verbal memory task. Relative to HCs, CUDs showed significantly lower [11C]UCB-J BPND in the hippocampus (~10%, p = 0.008, effect size 1.2) and also performed worse on the verbal memory task. These group differences in hippocampal BPND persisted after correction for volume differences (p = 0.013), and correction for both age and volume (p = 0.03). We demonstrate, for the first time, in vivo evidence of lower hippocampal synaptic density in cannabis use disorder. These results are consistent with the microstructural findings from experimental studies with cannabinoids in animals, and studies of hippocampal macrostructure in human with CUD. Whether the lower hippocampal synaptic density resolves with abstinence warrants further study.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison of Hippocampal synaptic density ([11C]UCB-J BPND) between Cannabis Use Disorder (CUD) and healthy controls (HC).

References

  1. 1.

    Winstock AR, Barratt MJ, Maier LJ, Aldridge A, Zhuparris A, Davies E, et al. Global Drug Survey (GDS) 2019 Key Findings Report. 2019.

  2. 2.

    Hasin DS, Wall M, Keyes KM, Cerda M, Schulenberg J, O’Malley PM, et al. Medical marijuana laws and adolescent marijuana use in the USA from 1991 to 2014: results from annual, repeated cross-sectional surveys. Lancet Psychiatry. 2015;2:601–8.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Freeman TP, Groshkova T, Cunningham A, Sedefov R, Griffiths P, Lynskey MT. Increasing potency and price of cannabis in Europe, 2006–16. Addiction. 2019;114:1015–23.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Hasin DS, Kerridge BT, Saha TD, Huang B, Pickering R, Smith SM, et al. Prevalence and correlates of DSM-5 cannabis use disorder, 2012–2013: findings from the National Epidemiologic Survey on Alcohol and Related Conditions–III. Am J Psychiatry. 2016;173:588–99.

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science. 1991;253:1380–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Ranganathan M, D’Souza DC. The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology. 2006;188:425–44.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Broyd SJ, van Hell HH, Beale C, Yucel M, Solowij N. Acute and chronic effects of cannabinoids on human cognition—a systematic review. Biol Psychiatry. 2016;79:557–67.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Auer R, Vittinghoff E, Yaffe K, Künzi A, Kertesz SG, Levine DA, et al. Association between lifetime marijuana use and cognitive function in middle age: the Coronary Artery Risk Development in Young Adults (CARDIA) study. JAMA Intern Med. 2016;176:352–61.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Lorenzetti V, Chye Y, Silva P, Solowij N, Roberts CA. Does regular cannabis use affect neuroanatomy? An updated systematic review and meta-analysis of structural neuroimaging studies. Eur Arch psychiatry Clin Neurosci. 2019;269:59–71.

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Bloomfield MA, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, et al. The neuropsychopharmacology of cannabis: a review of human imaging studies. Pharmacol Therap. 2019;195:132–61.

    CAS  Article  Google Scholar 

  11. 11.

    Yucel M, Solowij N, Respondek C, Whittle S, Fornito A, Pantelis C, et al. Regional brain abnormalities associated with long-term heavy cannabis use. Arch Gen Psychiatry. 2008;65:694–701.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Demirakca T, Sartorius A, Ende G, Meyer N, Welzel H, Skopp G, et al. Diminished gray matter in the hippocampus of cannabis users: possible protective effects of cannabidiol. Drug Alcohol Depend. 2010;114:242–5.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ashtari M, Avants B, Cyckowski L, Cervellione KL, Roofeh D, Cook P, et al. Medial temporal structures and memory functions in adolescents with heavy cannabis use. J Psychiatr Res. 2011;45:1055–66.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Cousijn J, Wiers RW, Ridderinkhof KR, van den Brink W, Veltman DJ, Goudriaan AE. Grey matter alterations associated with cannabis use: results of a VBM study in heavy cannabis users and healthy controls. Neuroimage. 2012;59:3845–51.

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Candelaria-Cook FT, Hamilton DA. Chronic cannabinoid agonist (WIN 55,212-2) exposure alters hippocampal dentate gyrus spine density in adult rats. Brain Res. 2014;1542:104–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Rubino T, Realini N, Braida D, Guidi S, Capurro V, Vigano D, et al. Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus. 2009;19:763–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Kolb B, Gorny G, Limebeer CL, Parker LA. Chronic treatment with delta-9-tetrahydrocannabinol alters the structure of neurons in the nucleus accumbens shell and medial prefrontal cortex of rats. Synapse. 2006;60:429–36.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Lawston J, Borella A, Robinson JK, Whitaker-Azmitia PM. Changes in hippocampal morphology following chronic treatment with the synthetic cannabinoid WIN 55,212-2. Brain Res. 2000;877:407–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Scallet AC. Neurotoxicology of cannabis and THC: a review of chronic exposure studies in animals. Pharm Biochem Behav. 1991;40:671–6.

    CAS  Article  Google Scholar 

  20. 20.

    Landfield PW, Cadwallader LB, Vinsant S. Quantitative changes in hippocampal structure following long-term exposure to delta 9-tetrahydrocannabinol: possible mediation by glucocorticoid systems. Brain Res. 1988;443:47–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Miller ML, Chadwick B, Dickstein DL, Purushothaman I, Egervari G, Rahman T, et al. Adolescent exposure to Δ 9-tetrahydrocannabinol alters the transcriptional trajectory and dendritic architecture of prefrontal pyramidal neurons. Mol Psychiatry. 2019;24:588–600.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Chen R, Zhang J, Fan N, Teng Z-Q, Wu Y, Yang H, et al. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell. 2013;155:1154–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Finnema SJ, Nabulsi NB, Mercier J, Lin S-F, Chen M-K, Matuskey D, et al. Kinetic evaluation and test–retest reproducibility of [11C] UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans. J Cereb Blood Flow Metab. 2018;38:2041–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:348ra396.

    Article  CAS  Google Scholar 

  25. 25.

    Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci. 1994;14:5223–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Südhof TC. The synaptic vesicle cycle. Annu Rev Neurosci. 2004;27:509–47.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  27. 27.

    Mutch SA, Kensel-Hammes P, Gadd JC, Fujimoto BS, Allen RW, Schiro PG, et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J Neurosci. 2011;31:1461–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Nabulsi NB, Mercier J, Holden D, Carre S, Najafzadeh S, Vandergeten MC, et al. Synthesis and preclinical evaluation of 11C-UCB-J as a PET tracer for imaging the synaptic vesicle glycoprotein 2A in the brain. J Nucl Med. 2016;57:777–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Holmes S, Finnema S, Davis M, DellaGioia N, Naganawa M, Nabulsi N, et al. F149. preliminary evidence for altered synaptic density and a possible role for accelerated ageing in individuals with MDD as measured with [11C] UCB-J PET. Biol Psychiatry. 2018;83:S296.

    Article  Google Scholar 

  30. 30.

    Onwordi EC, Halff EF, Whitehurst T, Mansur A, Cotel M-C, Wells L, et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat Commun. 2020;11:1–11.

    Article  CAS  Google Scholar 

  31. 31.

    Finnema S, Detyniecki K, Chen M-K, Dias M, Wang Q, Lin S-F. et al. Reduced SV2A binding in the seizure onset zone in temporal lobe epilepsy patients-A PET study with 11C-UCB-J. J Nucl Med. 2017;58:632.

    Article  CAS  Google Scholar 

  32. 32.

    Matuskey D, Tinaz S, Wilcox KC, Naganawa M, Toyonaga T, Dias M, et al. Synaptic changes in Parkinson disease assessed with in vivo imaging. Ann Neurol. 2020;87:329–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Chen M-K, Mecca A, Gallezot J-D, Naganawa M, Finnema S, Toyonaga T, et al. Correlation of neuronal function and synaptic density in Alzheimer’s disease. J Nucl Med. 2018;59:412.

    Article  Google Scholar 

  34. 34.

    Hjorthøj CR, Hjorthøj AR, Nordentoft M. Validity of timeline follow-back for self-reported use of cannabis and other illicit substances—systematic review and meta-analysis. Addict Behav. 2012;37:225–33.

    PubMed  Article  Google Scholar 

  35. 35.

    Robinson SM, Sobell LC, Sobell MB, Leo GI. Reliability of the timeline followback for cocaine, cannabis, and cigarette use. Psychol Addict Behav. 2014;28:154.

    PubMed  Article  Google Scholar 

  36. 36.

    Hjorthøj CR, Fohlmann A, Larsen AM, Arendt M, Nordentoft M. Correlations and agreement between delta‐9‐tetrahydrocannabinol (THC) in blood plasma and timeline follow‐back (TLFB)‐assisted self‐reported use of cannabis of patients with cannabis use disorder and psychotic illness attending the CapOpus randomized clinical trial. Addiction. 2012;107:1123–31.

    PubMed  Article  Google Scholar 

  37. 37.

    Hilton J, Yokoi F, Dannals RF, Ravert HT, Szabo Z, Wong DF. Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl Med Biol. 2000;27:627–30.

    CAS  Article  Google Scholar 

  38. 38.

    Gallezot J-D, Nabulsi N, Neumeister A, Planeta-Wilson B, Williams WA, Singhal T, et al. Kinetic modeling of the serotonin 5-HT(1B) receptor radioligand [(11)C]P943 in humans. J Cereb Blood Flow Metab. 2010;30:196–210.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Carson RE, Barker WC, Liow J-S, Johnson CA. Design of a motion-compensation OSEM List-mode Algorithm for Resolution-Recovery Reconstruction of the HRRT. Proceedings of the Conf Record IEEE Nuclear Science Symposium and Medical Imaging, Portland, OR; 2003.

  40. 40.

    Jin X, Mulnix T, Sandiego CM, Carson RE. Evaluation of frame-based and event-by-event motion-correction methods for awake monkey brain PET imaging. J Nucl Med. 2014;55:287–93.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    CAS  Article  Google Scholar 

  43. 43.

    Rossano S, Toyonaga T, Finnema SJ, Naganawa M, Lu Y, Nabulsi N et al. Assessment of a white matter reference region for (11)C-UCB-J PET quantification. J Cereb Blood Flow Metab. 2019. https://doi.org/10.1177/0271678X19879230.

  44. 44.

    Müller-Gärtner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab. 1992;12:571–83.

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Rosenberg SJ, Ryan JJ, Prifitera A. Rey Auditory-Verbal Learning Test performance of patients with and without memory impairment. J Clin Psychol. 1984;40:785–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Ryan JJ, Geisser ME, Randall DM, Georgemiller RJ. Alternate form reliability and equivalency of the Rey Auditory Verbal Learning Test. J Clin Exp Neuropsychol. 1986;8:611–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Ranganathan M, Radhakrishnan R, Addy PH, Schnakenberg-Martin AM, Williams AH, Carbuto M, et al. Tetrahydrocannabinol (THC) impairs encoding but not retrieval of verbal information. Prog Neuro Psychopharmacol Biol Psychiatry. 2017;79:176–83.

    CAS  Article  Google Scholar 

  48. 48.

    Solowij N, Stephens RS, Roffman RA, Babor T, Kadden R, Miller M, et al. Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA. 2002;287:1123–31.

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Cramir H. Mathematical methods of statistics. Princeton: Princeton U Press; 1946. 500.

  50. 50.

    Guilford J. Psychometric Methods. New York: McGraw–Hill Book Company, Inc.; 1936.

  51. 51.

    Hadley Wickham MA, Bryan Jennifer, Chang Winston, McGowan Lucy, François Romain, Grolemund Garrett, et al. Welcome to the {tidyverse}. J Open Source Softw. 2019;4:1686.

    Article  Google Scholar 

  52. 52.

    Kassambara A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. 0.4.0 edn2019.

  53. 53.

    Angarita G, Naganawa M, Toyonaga T, Nabulsi N, Huang Y, Worhunsky P, et al. In Vivo Evidence of Aberrant Synaptic Plasticity in Cocaine Users Vs. Healthy Controls Using 11C-UCB-J PET. ACNP 57th Annual Meeting: Poster Session II. Neuropsychopharmacology. 2018;43:228–382.

    Google Scholar 

  54. 54.

    Prince MA, Conner BT, Pearson MR. Quantifying cannabis: a field study of marijuana quantity estimation. Psychol Addictive Behav. 2018;32:426.

    Article  Google Scholar 

  55. 55.

    Loflin MJ, Kiluk BD, Huestis MA, Aklin WM, Budney AJ, Carroll KM, et al. The state of clinical outcome assessments for cannabis use disorder clinical trials: a review and research agenda. Drug Alcohol Depend. 2020. https://doi.org/10.1016/j.drugalcdep.2020.107993. [Epub ahead of print].

  56. 56.

    Scallet AC, Uemura E, Andrews A, Ali SF, McMillan DE, Paule MG, et al. Morphometric studies of the rat hippocampus following chronic delta-9-tetrahydrocannabinol (THC). Brain Res. 1987;436:193–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Landfield PW. Delta-9-tetrahydrocannabinol-dependent alterations in brain structure. NIDA Res Monogr. 1987;78:143–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Campbell VA. Tetrahydrocannabinol-induced apoptosis of cultured cortical neurones is associated with cytochrome c release and caspase-3 activation. Neuropharmacology. 2001;40:702–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Downer E, Boland B, Fogarty M, Campbell V. Delta 9-tetrahydrocannabinol induces the apoptotic pathway in cultured cortical neurones via activation of the CB1 receptor. Neuroreport. 2001;12:3973–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Quraishi SA, Paladini CA. A central move for CB2 receptors. Neuron. 2016;90:670–1.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Scheller A, Kirchhoff F. Endocannabinoids and heterogeneity of glial cells in brain function. Front Integr Neurosci. 2016;10:24.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Zamberletti E, Gabaglio M, Prini P, Rubino T, Parolaro D. Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats. Eur Neuropsychopharmacol. 2015;25:2404–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Da Silva T, Hafizi S, Watts JJ, Weickert CS, Meyer JH, Houle S, et al. In vivo imaging of translocator protein in long-term cannabis users. JAMA Psychiatry. 2019;76:1305–13.

    PubMed Central  Article  Google Scholar 

  64. 64.

    Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22:374–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Moretti S, Franchi S, Castelli M, Amodeo G, Somaini L, Panerai A, et al. Exposure of adolescent mice to delta-9-tetrahydrocannabinol induces long-lasting modulation of pro-and anti-inflammatory cytokines in hypothalamus and hippocampus similar to that observed for peripheral macrophages. J Neuroimmune Pharmacol. 2015;10:371–9.

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Melis M, Frau R, Kalivas PW, Spencer S, Chioma V, Zamberletti E, et al. New vistas on cannabis use disorder. Neuropharmacology. 2017;124:62–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Albertson TE, Chenoweth JA, Colby DK, Sutter ME. The changing drug culture: medical and recreationa marijuana. FP Essent. 2016;441:11–17.

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    SAMHSA. Results from the 2014 National Survey on Drug Use and Health: summary of national findings. Rockville, MD: Center for Behavioral Health Statistics and Quality Substance Abuse and Mental Health Services Administration (SAMHSA); 2015.

  69. 69.

    Chen X, Yu B, Lasopa SO, Cottler LB. Current patterns of marijuana use initiation by age among US adolescents and emerging adults: implications for intervention. Am J Drug Alcohol Abus. 2017;43:261–70.

    Article  Google Scholar 

  70. 70.

    Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2:861–3.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Rubino T, Parolaro D. Susceptibility to psychiatric diseases after cannabis abuse in adolescence: animal models. Endocannabinoids and lipid mediators in brain functions. Cham, Switzerland: Springer; 2017. pp 237–55.

  72. 72.

    Rubino T, Parolaro D. The impact of exposure to cannabinoids in adolescence: insights from animal models. Biol Psychiatry. 2015;79:578–85.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Ellgren M, Artmann A, Tkalych O, Gupta A, Hansen HS, Hansen SH, et al. Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects. Eur Neuropsychopharmacol. 2008;18:826–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Oddi S, Scipioni L, Maccarrone M. Endocannabinoid system and adult neurogenesis: a focused review. Curr Opin Pharmacol. 2020;50:25–32.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Lovelace JW, Corches A, Vieira PA, Hiroto AS, Mackie K, Korzus E. An animal model of female adolescent cannabinoid exposure elicits a long-lasting deficit in presynaptic long-term plasticity. Neuropharmacology. 2015;99:242–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the efforts of Kim Forselius-Bielen, Alex Selloni, and Harsimar Kaur working in the Schizophrenia Neuropharmacology Research Group at Yale (SNRGY), and staff at the Yale PET Center.

Funding

U.S. National Institute of Drug Abuse.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deepak Cyril D’Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Souza, D.C., Radhakrishnan, R., Naganawa, M. et al. Preliminary in vivo evidence of lower hippocampal synaptic density in cannabis use disorder. Mol Psychiatry (2020). https://doi.org/10.1038/s41380-020-00891-4

Download citation

Search