Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The pathophysiological impact of stress on the dopamine system is dependent on the state of the critical period of vulnerability

A Correction to this article was published on 27 September 2019

This article has been updated

Abstract

Unregulated stress during critical periods of development is proposed to drive deficits consistent with schizophrenia in adults. If accurate, reopening the critical period could make the adult susceptible to pathology. We evaluated the impact of early adolescent and adult stress exposure (combination of daily footshock for 10 days and 3 restraint sessions) on (1) midbrain dopamine (DA) neuron activity, (2) ventral hippocampal (vHipp) pyramidal neuron activity, and (3) the number of parvalbumin (PV) interneurons in the vHipp and their associated perineuronal nets (PNNs). Ventral tegmental area (VTA) DA neuron population activity and vHipp activity was increased 1–2 and 5–6 weeks post-adolescent stress, along with a decrease in the number of PV+, PNN+, PV + /PNN + cells in the vHipp, which are consistent with the MAM model of schizophrenia. In contrast, adult stress decreased VTA DA neuron population activity only at 1–2 weeks post stress, which is consistent with what has been observed in animal models of depression, without impacting vHipp activity and PV/PNN expression. Administration of valproate (VPA), which can re-instate the critical period of plasticity via histone deacetylase (HDAC) inhibition, caused adult stress to produce changes similar to those induced by adolescent stress, presumably by increasing stress vulnerability to early adolescent levels. Our findings indicate that timing of stress is a critical determinant of the pathology produced in the adult: adolescent stress led to circuit deficits that recapitulates schizophrenia, whereas adult stress induced a depression-like hypodopaminergic state. Reopening the critical period in the adult restores vulnerability to stress-induced pathology resembling schizophrenia.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 27 September 2019

    A correction to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD, et al. Schizophrenia. Nat Rev Dis Prim. 2015;1:15067.

    PubMed  Google Scholar 

  2. 2.

    Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, et al. Major depressive disorder. Nat Rev Dis Prim. 2016;2:16065.

    PubMed  Google Scholar 

  3. 3.

    Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    O’Donovan MC, Owen MJ. The implications of the shared genetics of psychiatric disorders. Nat Med. 2016;22:1214–9.

    PubMed  Google Scholar 

  5. 5.

    Rasic D, Hajek T, Alda M, Uher R. Risk of mental illness in offspring of parents with schizophrenia, bipolar disorder, and major depressive disorder: a meta-analysis of family high-risk studies. Schizophr Bull. 2014;40:28–38.

    Google Scholar 

  6. 6.

    Marin O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat Med. 2016;22:1229–38.

    CAS  PubMed  Google Scholar 

  7. 7.

    Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK, et al. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci USA. 2013;110:9130–5.

    CAS  PubMed  Google Scholar 

  8. 8.

    Caballero A, Tseng KY. GABAergic function as a limiting factor for prefrontal maturation during adolescence. Trends Neurosci. 2016;39:441–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Do KQ, Cuenod M, Hensch TK. Targeting oxidative stress and aberrant critical period plasticity in the developmental trajectory to schizophrenia. Schizophr Bull. 2015;41:835–46.

    Google Scholar 

  10. 10.

    Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Grace AA, Gomes FV. The circuitry of dopamine system regulation and its disruption in schizophrenia: insights into treatment and prevention. Schizophr Bull. 2019;45:148–57.

  12. 12.

    Baroncelli L, Scali M, Sansevero G, Olimpico F, Manno I, Costa M, et al. Experience affects critical period plasticity in the visual cortex through an epigenetic regulation of histone post-translational modifications. J Neurosci. 2016;36:3430–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Silingardi D, Scali M, Belluomini G, Pizzorusso T. Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long-term monocular deprivation. Eur J Neurosci. 2010;31:2185–92.

    PubMed  Google Scholar 

  14. 14.

    Gomes FV, Grace AA. Prefrontal cortex dysfunction increases susceptibility to schizophrenia-like changes induced by adolescent stress exposure. Schizophr Bull. 2017;43:592–600.

    Google Scholar 

  15. 15.

    Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci. 1984;4:2877–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci. 1984;4:2866–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lodge DJ, Grace AA. Aberrant hippocampal activity underlies the dopamine dysregulation in an animal model of schizophrenia. J Neurosci. 2007;27:11424–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Caballero A, Diah KC, Tseng KY. Region-specific upregulation of parvalbumin-, but not calretinin-positive cells in the ventral hippocampus during adolescence. Hippocampus. 2013;23:1331–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Caballero A, Flores-Barrera E, Cass DK, Tseng KY. Differential regulation of parvalbumin and calretinin interneurons in the prefrontal cortex during adolescence. Brain Struct Funct. 2014;219:395–406.

    CAS  PubMed  Google Scholar 

  20. 20.

    Lensjo KK, Christensen AC, Tennoe S, Fyhn M, Hafting T. Differential expression and cell-type specificity of perineuronal nets in hippocampus, medial entorhinal cortex, and visual cortex examined in the rat and mouse. eNeuro. 2017;4:1–18.

  21. 21.

    Esneault E, Peyon G, Castagne V. Efficacy of anticonvulsant substances in the 6Hz seizure test: Comparison of two rodent species. Epilepsy Res. 2017;134:9–15.

    CAS  PubMed  Google Scholar 

  22. 22.

    Barbosa FJ, Hesse B, de Almeida RB, Baretta IP, Boerngen-Lacerda R, Andreatini R. Magnesium sulfate and sodium valproate block methylphenidate-induced hyperlocomotion, an animal model of mania. Pharmacol Rep. 2011;63:64–70.

    CAS  PubMed  Google Scholar 

  23. 23.

    Biggs CS, Pearce BR, Fowler LJ, Whitton PS. The effect of sodium valproate on extracellular GABA and other amino acids in the rat ventral hippocampus: an in vivo microdialysis study. Brain Res. 1992;594:138–42.

    CAS  PubMed  Google Scholar 

  24. 24.

    Chang CH, Grace AA. Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol Psychiatry. 2014;76:223–30.

    CAS  PubMed  Google Scholar 

  25. 25.

    Lodge DJ, Grace AA. Amphetamine activation of hippocampal drive of mesolimbic dopamine neurons: a mechanism of behavioral sensitization. J Neurosci. 2008;28:7876–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gomes FV, Rincon-Cortes M, Grace AA. Adolescence as a period of vulnerability and intervention in schizophrenia: Insights from the MAM model. Neurosci Biobehav Rev. 2016;70:260–70.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Moore H, Rose HJ, Grace AA. Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology. 2001;24:410–9.

    CAS  PubMed  Google Scholar 

  28. 28.

    Moreines JL, Owrutsky ZL, Grace AA. Involvement of infralimbic prefrontal cortex but not lateral habenula in dopamine attenuation after chronic mild stress. Neuropsychopharmacology. 2017;42:904–13.

    CAS  PubMed  Google Scholar 

  29. 29.

    Belujon P, Grace AA. Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity. Biol Psychiatry. 2014;76:927–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Modinos G, Allen P, Grace AA, McGuire P. Translating the MAM model of psychosis to humans. Trends Neurosci. 2015;38:129–38.

    CAS  PubMed  Google Scholar 

  31. 31.

    Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci. 2005;6:877–88.

    CAS  PubMed  Google Scholar 

  32. 32.

    Nabel EM, Morishita H. Regulating critical period plasticity: insight from the visual system to fear circuitry for therapeutic interventions. Front Psychiatry. 2013;4:146.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Banerjee SB, Gutzeit VA, Baman J, Aoued HS, Doshi NK, Liu RC, et al. Perineuronal nets in the adult sensory cortex are necessary for fear learning. Neuron. 2017;95:169–79 e163.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Gervain J, Vines BW, Chen LM, Seo RJ, Hensch TK, Werker JF, et al. Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci. 2013;7:102.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Yang EJ, Lin EW, Hensch TK. Critical period for acoustic preference in mice. Proc Natl Acad Sci USA. 2012;109(Suppl 2):17213–20.

    CAS  PubMed  Google Scholar 

  36. 36.

    Lennartsson A, Arner E, Fagiolini M, Saxena A, Andersson R, Takahashi H, et al. Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticity by HDAC inhibitors. Epigenetics Chromatin. 2015;8:55.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Corcoran CM, Smith C, McLaughlin D, Auther A, Malaspina D, Cornblatt B. HPA axis function and symptoms in adolescents at clinical high risk for schizophrenia. Schizophr Res. 2012;135:170–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Walker EF, Trotman HD, Pearce BD, Addington J, Cadenhead KS, Cornblatt BA, et al. Cortisol levels and risk for psychosis: initial findings from the North American prodrome longitudinal study. Biol Psychiatry. 2013;74:410–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Slopen N, Williams DR, Fitzmaurice GM, Gilman SE. Sex, stressful life events, and adult onset depression and alcohol dependence: are men and women equally vulnerable? Soc Sci Med. 2011;73:615–22.

    PubMed  Google Scholar 

  40. 40.

    Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M, et al. Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry. 2010;67:231–9.

    CAS  PubMed  Google Scholar 

  41. 41.

    Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MA, Bhattacharyya S, Allen P, et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol Psychiatry. 2013;74:106–12.

    CAS  PubMed  Google Scholar 

  42. 42.

    Stone JM, Howes OD, Egerton A, Kambeitz J, Allen P, Lythgoe DJ, et al. Altered relationship between hippocampal glutamate levels and striatal dopamine function in subjects at ultra high risk of psychosis. Biol Psychiatry. 2010;68:599–602.

    CAS  PubMed  Google Scholar 

  43. 43.

    Schobel SA, Chaudhury NH, Khan UA, Paniagua B, Styner MA, Asllani I, et al. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron. 2013;78:81–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–63.

    CAS  PubMed  Google Scholar 

  46. 46.

    Cabungcal JH, Steullet P, Kraftsik R, Cuenod M, Do KQ. Early-life insults impair parvalbumin interneurons via oxidative stress: reversal by N-acetylcysteine. Biol Psychiatry. 2013;73:574–82.

    CAS  PubMed  Google Scholar 

  47. 47.

    Zhang ZJ, Reynolds GP. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res. 2002;55:1–10.

    PubMed  Google Scholar 

  48. 48.

    Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6:312–24.

    CAS  PubMed  Google Scholar 

  49. 49.

    Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, et al. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry. 2017;22:936–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    O’Mara S. The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. J Anat. 2005;207:271–82.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol. 2009;19:220–30.

    CAS  PubMed  Google Scholar 

  52. 52.

    Donato F, Rompani SB, Caroni P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature. 2013;504:272–6.

    CAS  PubMed  Google Scholar 

  53. 53.

    Shah A, Lodge DJ. A loss of hippocampal perineuronal nets produces deficits in dopamine system function: relevance to the positive symptoms of schizophrenia. Transl Psychiatry. 2013;3:e215.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Nott A, Cho S, Seo J, Tsai LH. HDAC2 expression in parvalbumin interneurons regulates synaptic plasticity in the mouse visual cortex. Neuroepigenetics. 2015;1:34–40.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734–41.

    CAS  PubMed  Google Scholar 

  56. 56.

    Hensch TK, Quinlan EM. Critical periods in amblyopia. Vis Neurosci. 2018;35:E014.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agustsdottir A, et al. Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science. 2011;334:1731–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Bangasser DA, Valentino RJ. Sex differences in stress-related psychiatric disorders: neurobiological perspectives. Front Neuroendocr. 2014;35:303–19.

    Google Scholar 

  59. 59.

    Goldstein JM, Seidman LJ, O’Brien LM, Horton NJ, Kennedy DN, Makris N, et al. Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry. 2002;59:154–64.

    PubMed  Google Scholar 

  60. 60.

    Page CE, Coutellier L. Adolescent stress disrupts the maturation of anxiety-related behaviors and alters the developmental trajectory of the prefrontal cortex in a sex- and age-specific manner. Neuroscience. 2018;390:265–77.

    CAS  PubMed  Google Scholar 

  61. 61.

    Lin A, Wood SJ, Nelson B, Beavan A, McGorry P, Yung AR. Outcomes of nontransitioned cases in a sample at ultra-high risk for psychosis. Am J Psychiatry. 2015;172:249–58.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Niki MacMurdo and Christy Smolak for technical assistance and Kaetlyn Conner for the analysis of imaging experiments.

Financial support

National Institutes of Health (NIH MH57440) to AAG.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felipe V. Gomes.

Ethics declarations

Conflict of interest

AAG has received funds from Lundbeck, Pfizer, Otsuka, Lilly, Roche, Asubio, Abbott, Autofony, Janssen, Alkermes, Newron, and Takeda. FVG and XZ declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomes, F.V., Zhu, X. & Grace, A.A. The pathophysiological impact of stress on the dopamine system is dependent on the state of the critical period of vulnerability. Mol Psychiatry 25, 3278–3291 (2020). https://doi.org/10.1038/s41380-019-0514-1

Download citation

Further reading

Search

Quick links