Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negr1 controls adult hippocampal neurogenesis and affective behaviors

Abstract

Recent genome-wide association studies on major depressive disorder have implicated neuronal growth regulator 1 (Negr1), a GPI-anchored cell adhesion molecule in the immunoglobulin LON family. Although Negr1 has been shown to regulate neurite outgrowth and synapse formation, the mechanism through which this protein affects mood disorders is still largely unknown. In this research, we characterized Negr1-deficient (negr1−/−) mice to elucidate the function of Negr1 in anxiety and depression. We found that anxiety- and depression-like behaviors increased in negr1−/− mice compared with wild-type mice. In addition, negr1−/− mice had decreased adult hippocampal neurogenesis compared to wild-type mice. Concurrently, both LTP and mEPSC in the dentate gyrus (DG) region were severely compromised in negr1−/− mice. In our effort to elucidate the underlying molecular mechanisms, we found that lipocalin-2 (Lcn2) expression was decreased in the hippocampus of negr1−/− mice compared to wild-type mice. Heterologous Lcn2 expression in the hippocampal DG of negr1−/− mice rescued anxiety- and depression-like behaviors and restored neurogenesis and mEPSC frequency to their normal levels in these mice. Furthermore, we discovered that Negr1 interacts with leukemia inhibitory factor receptor (LIFR) and modulates LIF-induced Lcn2 expression. Taken together, our data uncovered a novel mechanism of mood regulation by Negr1 involving an interaction between Negr1 and LIFR along with Lcn2 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA. 2003;289:3095–105.

    Article  Google Scholar 

  2. Wittchen HU. The burden of mood disorders. Science. 2012;338:15.

    Article  CAS  Google Scholar 

  3. Shen Z, Cheng Y, Yang S, Dai N, Ye J, Liu X, et al. Changes of grey matter volume in first-episode drug-naive adult major depressive disorder patients with different age-onset. Neuroimage Clin. 2016;12:492–8.

    Article  Google Scholar 

  4. Zhuo C, Zhu J, Wang C, Qu H, Ma X, Qin W. Different spatial patterns of brain atrophy and global functional connectivity impairments in major depressive disorder. Brain Imaging Behav. 2016. https://doi.org/10.1007/s11682-016-9645-z

    Article  Google Scholar 

  5. Ransome MI, Renoir T, Hannan AJ. Hippocampal neurogenesis, cognitive deficits and affective disorder in Huntington’s disease. Neural Plast. 2012;2012:874387.

    Article  Google Scholar 

  6. Segi-Nishida E. The effect of serotonin-targeting antidepressants on neurogenesis and neuronal maturation of the hippocampus mediated via 5-HT1A and 5-HT4 receptors. Front Cell Neurosci. 2017;11:142.

    Article  Google Scholar 

  7. Papakostas GI, Homberger CH, Fava M. A meta-analysis of clinical trials comparing mirtazapine with selective serotonin reuptake inhibitors for the treatment of major depressive disorder. J Psychopharmacol. 2008;22:843–8.

    Article  CAS  Google Scholar 

  8. Parker CC, Gopalakrishnan S, Carbonetto P, Gonzales NM, Leung E, Park YJ, et al. Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nat Genet. 2016;48:919–26.

    Article  CAS  Google Scholar 

  9. Major Depressive Disorder Working Group of the Psychiatric GC, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. 2013;18:497–511.

    Article  Google Scholar 

  10. Direk N, Williams S, Smith JA, Ripke S, Amare AT, Amin N, et al. An analysis of two genome-wide association meta-analyses identified a new locus for broad depression phenotype. Biol Psychiatry. 2016. https://doi.org/10.1016/j.biopsych.2016.11.013.

    Article  CAS  Google Scholar 

  11. Maccarrone G, Ditzen C, Yassouridis A, Rewerts C, Uhr M, Uhlen M, et al. Psychiatric patient stratification using biosignatures based on cerebrospinal fluid protein expression clusters. J Psychiatr Res. 2013;47:1572–80.

    Article  Google Scholar 

  12. Tamási V, Petschner P, Adori C, Kirilly E, Ando RD, Tothfalusi L, et al. Transcriptional evidence for the role of chronic venlafaxine treatment in neurotrophic signaling and neuroplasticity including also glutatmatergic- and insulin-mediated neuronal processes. PLoS ONE. 2014;9:e113662.

    Article  Google Scholar 

  13. Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet. 2016;48:1031–6.

    Article  CAS  Google Scholar 

  14. Funatsu N, Miyata S, Kumanogoh H, Shigeta M, Hamada K, Endo Y, et al. Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. J Biol Chem. 1999;274:8224–30.

    Article  CAS  Google Scholar 

  15. Miyata S, Matsumoto N, Taguchi K, Akagi A, Iino T, Funatsu N, et al. Biochemical and ultrastructural analyses of IgLON cell adhesion molecules, Kilon and OBCAM in the rat brain. Neuroscience. 2003;117:645–58.

    Article  CAS  Google Scholar 

  16. Hashimoto T, Yamada M, Maekawa S, Nakashima T, Miyata S. IgLON cell adhesion molecule Kilon is a crucial modulator for synapse number in hippocampal neurons. Brain Res. 2008;1224:1–11.

    Article  CAS  Google Scholar 

  17. Sanz R, Ferraro GB, Fournier AE. IgLON cell adhesion molecules are shed from the cell surface of cortical neurons to promote neuronal growth. J Biol Chem. 2015;290:4330–42.

    Article  CAS  Google Scholar 

  18. Schafer M, Brauer AU, Savaskan NE, Rathjen FG, Brummendorf T. Neurotractin/kilon promotes neurite outgrowth and is expressed on reactive astrocytes after entorhinal cortex lesion. Mol Cell Neurosci. 2005;29:580–90.

    Article  Google Scholar 

  19. Pischedda F, Piccoli G. The IgLON family member Negr1 promotes neuronal arborization acting as soluble factor via FGFR2. Front Mol Neurosci. 2015;8:89.

    PubMed  Google Scholar 

  20. Boender AJ, Gestel MA, Garner KM, Luijendijk MC, Adan RA, et al. The obesity-associated Negr1 regulates aspects of energy balance in rat hypothalamic areas. Physiol Rep. 2014;2:e12083.

    Article  Google Scholar 

  21. Lee A, Hengstler H, Schwald K, Mauricio BD, Loreth D, Mirsch M, et al. Functional interaction of the genome-wide association study obesity gene neuronal growth regulator 1 in mice causes a body mass phenotype. PLoS ONE. 2012;7:e41537.

    Article  CAS  Google Scholar 

  22. Szczurkowska J, Pischedda F, Into B, Manago F, Haas CA, Summa M, et al. Negr1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain. 2018;141:2772–94.

    PubMed  PubMed Central  Google Scholar 

  23. Singh K, Loreth D, Pottker B, Hefti K, Innos J, Schwald K, et al. Neuronal growth and behavioral alterations in mice deficient for the psychiatric disease-associated Negr1 gene. Front Mol Neurosci. 2018;11:30.

    Article  Google Scholar 

  24. Snyder JS, Moumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses. Nature. 2011;476:458–61.

    Article  CAS  Google Scholar 

  25. Smith SM. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialoques Clin Neurosci. 2006;8:383–95.

    Google Scholar 

  26. Benedict JK, Lindsay W, Louis JM. HPA axis dysregulation and behavioral analysis of mouse mutants with altered GR or MR function. Stress. 2008;11:321–38.

    Article  Google Scholar 

  27. Ferreira AC, Santos T, Sampaio-Marques B, Novais A, et al. Lipocalin-2 regulates adult neurogenesis and contextual discriminative behaviours. Mol Psych. 2017;23:1031–9.

    Article  Google Scholar 

  28. Mucha M, Skrzypiec AE, Schiavon E, Attwood BK, Kucerova E, Pawlak R. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation. Proc Natl Acad Sci USA. 2011;108:18436–41.

    Article  CAS  Google Scholar 

  29. Ferreira AC, Pinto V, Da Mesquita S, Novais A, Sousa JC, Correia-Neves M, et al. Lipocalin-2 is involved in emotional behaviors and cognitive function. Front Cell Neurosci. 2013;7:122.

    Article  Google Scholar 

  30. Kim H, Chun Y, Che L, Kim J, Lee S, Lee S. The new obesity-associated protein, neuronal growth regulator 1 (NEGR1) is implicated in Niemann-Pick disease Type C (NPC2)-mediated cholesterol trafficking. Biochem Biophys Res Commun. 2017;482:1367–74.

    Article  CAS  Google Scholar 

  31. Langlais D, Couture C, Balsalobre A, Drouin J. Regulatory network analyses reveal genome-wide potentiation of LIF signaling by glucocorticoids and define an innate cell defense response. PLoS Genet. 2008;4:e1000224.

    Article  Google Scholar 

  32. Jang S, Oh D, Lee Y, Hosy E, Shin H, van Riesen C, et al. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity. Nat Neurosci. 2016;19:84–93.

    Article  CAS  Google Scholar 

  33. Faludi G, Mirnics K. Synaptic changes in the brain of subjects with schizophrenia. Int J Dev Neurosci. 2011;29:305–9.

    Article  Google Scholar 

  34. Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci. 2015;38:279–94.

    Article  CAS  Google Scholar 

  35. Aonurm-Helm A, Jurgenson M, Zharkovsky T, Sonn K, Berezin V, et al. Depression-like behaviour in neural cell adhesion molecule (NCAM)-deficient mice and its reversal by an NCAM-derived peptide, FGL. Eur J Neurosci. 2008;28:1618–28.

    Article  Google Scholar 

  36. Wędzony K, Chocyk A, Maćkowiak M. Potential roles of NCAM/PSA-NCAM proteins in depression and the mechanism of action of antidepressant drugs. Pharmacol Rep. 2013;65:1471–8.

    Article  Google Scholar 

  37. Catania EH, Pimenta A, Levitt P. Genetic deletion of Lsamp causes exaggerated behavioral activation in novel environments. Behav Brain Res. 2008;188:380–90.

    CAS  PubMed  Google Scholar 

  38. Law JW, Lee AY, Sun M, Nikonenko AG, Chung SK, Dityatev A, et al. Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1. J Neurosci. 2003;23:10419–32.

    Article  CAS  Google Scholar 

  39. Koido K, Traks T, Balotsev R, Eller T, et al. Associations between LSAMP gene polymorphisms and major depressive disorder and panic disorder. Transl Psychiatry. 2012;2:e152.

    Article  CAS  Google Scholar 

  40. Axelsson L, Bergenfeldt M, Ohlsson K. Studies of the release and turnover of a human neutrophil lipocalin. Scand J Clin Lab Invest. 1995;55:577–88.

    Article  CAS  Google Scholar 

  41. Bi F, Huang C, Tong J, Qiu G, Huang B, Wu Q, et al. Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci USA. 2013;110:4069–74.

    Article  CAS  Google Scholar 

  42. Skrzypiec AE, Shah RS, Schiavon E, Baker E, Skene N, Pawlak R, et al. Stress-induced lipocalin-2 controls dendritic spine formation and neuronal activity in the amygdala. PLoS ONE. 2013;8:e61046.

    Article  CAS  Google Scholar 

  43. Jha MK, Lee S, Park DH, Kook H, Park KG, Lee IK, et al. Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev. 2015;49:135–56.

    Article  CAS  Google Scholar 

  44. Gearing DP, Thut CJ, Vandenbos T, Gimpel SD, Delaney PB, King J, et al. Leukemia inhibitory factor receptor is structurally related to the Il-6 signal transducer, Gp130. EMBO J. 1991;10:2839–48.

    Article  CAS  Google Scholar 

  45. Huyton T, Zhang JG, Luo CS, Lou MZ, Hilton DJ, Nicola NA, et al. An unusual cytokine: Ig-domain interaction revealed in the crystal structure of leukemia inhibitory factor (LIF) in complex with the LIF receptor. Proc Natl Acad Sci USA. 2007;104:12737–42.

    Article  CAS  Google Scholar 

  46. Ernst M, Inglese M, Waring P, Campbell IK, Bao S, Clay FJ, et al. Defective gp130-mediated signal transducer and activator of transcription (STAT) signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterine implantation. J Exp Med. 2001;194:189–203.

    Article  CAS  Google Scholar 

  47. Muller S, Baby PS, Schwegler H, Hofmann H-D, Kirsch M. Neurogenesis in the dentate gyrus depends on ciliary neurotrophic factor and signal transducer and activator of transcription 3 signaling. Stem Cells. 2009;27:431–41.

    Article  Google Scholar 

  48. He W, Gong K, Smith DK, Ip NY. The N-terminal cytokine binding domain of LIFR is required for CNTF binding and signaling. FEBS Lett. 2005;579:4317–23.

    Article  CAS  Google Scholar 

  49. Khairova RA, Rodrigo M-V, Du J, Manji HK. A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. Int J Neuropsych. 2009;12:561–78.

    Article  CAS  Google Scholar 

  50. Jun H, Hussaini S, Rigby M, Jang M-H. Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders. Neural Plast. 2012;2012:854285.

    Article  Google Scholar 

  51. Mongiat LA, Esposito MS, Lombardi G, Schinder AF. Reliable activation of immature neurons in the adult hippocampus. PLoS ONE. 2009;4:e5320.

    Article  Google Scholar 

  52. Lee SH, Ho WK, Lee SH. Characterization of somatic Ca2+ clearance mechanisms in young and mature hippocampal granule cells. Cell Calcium. 2009;45:465–73.

    Article  CAS  Google Scholar 

  53. Sun D, Sun XD, Zhao L, Lee DH, Hu JX, Tang FL, et al. Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior. Cell Death Dis. 2018;9:8.

    Article  CAS  Google Scholar 

  54. She YL, Xu J, Duan YH, Su N, Sun YN, Cao XH, et al. Possible antidepressant effects and mechanism of electroacupuncture in behaviors and hippocampal synaptic plasticity in a depression rat model. Brain Res. 2015;1629:291–7.

    Article  CAS  Google Scholar 

  55. Yang L, Xu T, Zhang K, Wei Z, Li X, Huang M, et al. The essential role of hippocampal alpha6 subunit-containing GABAA receptors in maternal separation stress-induced adolescent depressive behaviors. Behav Brain Res. 2016;313:135–43.

    Article  CAS  Google Scholar 

  56. Kim JY, Lee JH, Kim D, Kim SM, Koo J, Jahng JW. Beneficial effects of highly palatable food on the behavioral and neural adversities induced by early life stress experience in female rats. Int J Biol Sci. 2015;11:1150–9.

    Article  CAS  Google Scholar 

  57. Lee H, Baek J, Min H, Cho IH, Yu SW, Lee SJ. Toll-like receptor 3 contributes to Wallerian degeneration after peripheral nerve injury. Neuroimmunomodulation. 2016;23:209–16.

    Article  CAS  Google Scholar 

  58. Orlowski D, Bjarkam CR. A simple reproducible and time saving method of semi-automatic dendrite spine density estimation compared to manual spine counting. J Neurosci Methods. 2012;208:128–33.

    Article  Google Scholar 

  59. Hong J, Cho IH, Kwak KI, Suh EC, Seo J, Min HJ, et al. Microglial Toll-like receptor 2 contributes to kainic acid-induced glial activation and hippocampal neuronal cell death. J Biol Chem. 2010;285:39447–57.

    Article  CAS  Google Scholar 

  60. Um JW, Choi TY, Kang H, Cho YS, Choii G, Uvarov P, et al. LRRTM3 regulates excitatory synapse development through alternative splicing and neurexin binding. Cell Rep. 2016;14:808–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Research Foundation of Korea, funded by the Ministry of Science and ICT (NRF-2013R1A2A2A01067248, NRF-2016M3C7A1905074, and NRF-2016M3C7A1905481), Republic of Korea.

Author contributions

KN, HL, TYC, SL, SYC, and SJL designed the research study. KN, SJK, and JYK performed all behavioral tests and analysis. KN and HL performed the Golgi stain, cell culture experiments, and the real-time RT-PCR. KN performed the immunohistochemistry, plasma corticosterone assay, and virus experiments. HL and YJ performed the western blot assays, and HL performed the immunoprecipitation assays. KN and TYC performed the electrophysiology experiments. HK performed the yeast two-hybrid screening and GST pulldown assay. KN, SL, SYC, and SJL wrote the manuscript, and all authors commented on the manuscript. SJ, SYC, and SJL supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soojin Lee, Se-Young Choi or Sung Joong Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, K., Lee, H., Choi, TY. et al. Negr1 controls adult hippocampal neurogenesis and affective behaviors. Mol Psychiatry 24, 1189–1205 (2019). https://doi.org/10.1038/s41380-018-0347-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0347-3

This article is cited by

Search

Quick links