Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Intergenerational transmission of depression: clinical observations and molecular mechanisms

Abstract

Maternal mental illness can have a devastating effect during the perinatal period, and has a profound impact on the care that the baby receives and on the relationships that the baby forms. This review summarises clinical evidence showing the effects of perinatal depression on offspring physical and behavioural development, and on the transmission of psychopathology between generations. We then evaluate a number of factors which influence this relationship, such as genetic factors, the use of psychotropic medications during pregnancy, the timing within the perinatal period, the sex of the foetus, and exposure to maltreatment in childhood. Finally, we examine recent findings regarding the molecular mechanisms underpinning these clinical observations, and identify relevant epigenetic and biomarker changes in the glucocorticoid, oxytocin, oestrogen and immune systems, as key biological mediators of these clinical findings. By understanding these molecular mechanisms in more detail, we will be able to improve outcomes for both mothers and their offspring for generations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Bonari L, Pinto N, Ahn E, Einarson A, Steiner M, Koren G. Perinatal risks of untreated depression during pregnancy. Can J Psychiatry. 2004;49:726–35.

    PubMed  Google Scholar 

  2. Biaggi A, Conroy S, Pawlby S, Pariante CM. Identifying the women at risk of antenatal anxiety and depression: a systematic review. J Affect Disord. 2016;191:62–77.

    PubMed  PubMed Central  Google Scholar 

  3. Stein A, Pearson RM, Goodman SH, Rapa E, Rahman A, McCallum M, et al. Effects of perinatal mental disorders on the fetus and child. Lancet. 2014;384:1800–19.

    Google Scholar 

  4. Murray L, Kempton C, Woolgar M, Hooper R. Depressed mothers’ speech to their infants and its relation to infant gender and cognitive development. J Child Psychol Psychiatry. 1993;34:1083–101.

    CAS  PubMed  Google Scholar 

  5. Sit D, Rothschild AJ, Wisner KL. A review of postpartum psychosis. J Women’s Health (Larchmt). 2006;15:352–68.

    Google Scholar 

  6. Feldman R, Granat A, Pariente C, Kanety H, Kuint J, Gilboa-Schechtman E. Maternal depression and anxiety across the postpartum year and infant social engagement, fear regulation, and stress reactivity. J Am Acad Child Adolesc Psychiatry. 2009;48:919–27.

    PubMed  Google Scholar 

  7. Murray L. The Impact of postnatal depression on infant development. J Child Psychol Psychiatry. 1992;33:543–61.

    CAS  PubMed  Google Scholar 

  8. Leis JA, Heron J, Stuart EA, Mendelson T. Associations between maternal mental health and child emotional and behavioral problems: Does prenatal mental health matter? J Abnorm Child Psychol. 2014;42:161–71.

    PubMed  Google Scholar 

  9. Evans J, Melotti R, Heron J, Ramchandani P, Wiles N, Murray L, et al. The timing of maternal depressive symptoms and child cognitive development: a longitudinal study. J Child Psychol Psychiatry. 2012;53:632–40.

    PubMed  Google Scholar 

  10. Pearson RM, Evans J, Kounali D, Lewis G, Heron J, Ramchandani PG, et al. Maternal depression during pregnancy and the postnatal period: risks and possible mechanisms for offspring depression at age 18 years. JAMA Psychiatry. 2013;70:1312–9.

    PubMed  PubMed Central  Google Scholar 

  11. Barker ED, Jaffee SR, Uher R, Maughan B. The contribution of prenatal and postnatal maternal anxiety and depression to child maladjustment. Depress Anxiety. 2011;28:696–702.

    PubMed  Google Scholar 

  12. Hanington L, Heron J, Stein A, Ramchandani P. Parental depression and child outcomes - is marital conflict the missing link? Child Care Health Dev. 2012;38:520–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Letourneau NL, Tramonte L, Willms JD. Maternal depression, family functioning and children’s longitudinal development. J Pediatr Nurs. 2013;28:223–34.

    PubMed  Google Scholar 

  14. Naicker K, Wickham M, Colman I, Swartz M, Hemmingsson T. Timing of first exposure to maternal depression and adolescent emotional disorder in a national canadian cohort. PLoS ONE. 2012;7:e33422.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Galéra C, Côté SM, Bouvard MP, Pingault J-B, Melchior M, Michel G, et al. Early risk factors for hyperactivity-impulsivity and inattention trajectories from age 17 months to 8 years. Arch Gen Psychiatry. 2011;68:1267.

    PubMed  Google Scholar 

  16. Velders FP, Dieleman G, Henrichs J, Jaddoe VWV, Hofman A, Verhulst FC, et al. Prenatal and postnatal psychological symptoms of parents and family functioning: the impact on child emotional and behavioural problems. Eur Child Adolesc Psychiatry. 2011;20:341–50.

    PubMed  PubMed Central  Google Scholar 

  17. Van Batenburg-Eddes T, Brion MJJ, Henrichs J, Jaddoe VWVW V, Hofman A, Verhulst FCC, et al. Parental depressive and anxiety symptoms during pregnancy and attention problems in children: a cross-cohort consistency study. J Child Psychol Psychiatry Allied Discip. 2013;54:591–600.

    Google Scholar 

  18. Tharner A, Luijk MPCM, van IJzendoorn MH, Bakermans-Kranenburg MJ, Jaddoe VWV, et al. Maternal lifetime history of depression and depressive symptoms in the prenatal and early postnatal period do not predict infant–mother attachment quality in a large, population-based Dutch cohort study. Attach Hum Dev. 2012;14:63–81.

    PubMed  Google Scholar 

  19. Verbeek T, Bockting CLH, van Pampus MG, Ormel J, Meijer JL, Hartman CA, et al. Postpartum depression predicts offspring mental health problems in adolescence independently of parental lifetime psychopathology. J Affect Disord. 2012;136:948–54.

    PubMed  Google Scholar 

  20. Kersten-Alvarez LE, Hosman CMH, Riksen-Walraven JM, van Doesum KTM, Smeekens S, Hoefnagels C. Early school outcomes for children of postpartum depressed mothers: comparison with a community sample. Child Psychiatry Hum Dev. 2012;43:201–18.

    PubMed  Google Scholar 

  21. Hartley C, Pretorius K, Mohamed A, Laughton B, Madhi S, Cotton MF, et al. Maternal postpartum depression and infant social withdrawal among human immunodeficiency virus (HIV) positive mother–infant dyads. Psychol Health Med. 2010;15:278–87.

    CAS  PubMed  Google Scholar 

  22. Noorlander Y, Bergink V, Van Den, Berg MP. Perceived and observed mother-child interaction at time of hospitalization and release in postpartum depression and psychosis. Arch Women’s Ment Health. 2008;11:49–56.

    CAS  Google Scholar 

  23. Hornstein C, Trautmann-Villalba P, Hohm E, Rave E, Wortmann-Fleischer S, Schwarz M. Maternal bond and mother-child interaction in severe postpartum psychiatric disorders: is there a link? Arch Women’s Ment Health. 2006;9:279–84.

    Google Scholar 

  24. Chandra PS, Bhargavaraman RP, VNGP Raghunandan, Shaligram D. Delusions related to infant and their association with mother-infant interactions in postpartum psychotic disorders. Arch Women’s Ment Health. 2006;9:285–8.

    CAS  PubMed  Google Scholar 

  25. Pawlby S, Hay DF, Sharp D, Waters CS, O’Keane V. Antenatal depression predicts depression in adolescent offspring: Prospective longitudinal community-based study. J Affect Disord. 2009;113:236–43.

    PubMed  Google Scholar 

  26. O'Donnell KJ, Glover V, Barker ED, O'Connor TG. The persisting effect of maternal mood in pregnancy on childhood psychopathology. 2017. https://doi.org/10.1017/S0954579414000029.

    PubMed  Google Scholar 

  27. Plant DT, Pariante CM, Sharp D, Pawlby S. Maternal depression during pregnancy and offspring depression in adulthood: Role of child maltreatment. Br J Psychiatry. 2015;207:213–20.

    PubMed  PubMed Central  Google Scholar 

  28. Hay DF, Pawlby S, Waters CS, Sharp D. Antepartum and postpartum exposure to maternal depression: different effects on different adolescent outcomes. J Child Psychol Psychiatry. 2008;49:1079–88.

    PubMed  Google Scholar 

  29. Capron LE, Glover V, Pearson RM, Evans J, O’Connor TG, Stein A, et al. Associations of maternal and paternal antenatal mood with offspring anxiety disorder at age 18 years. J Affect Disord. 2015;187:20–6.

    PubMed  PubMed Central  Google Scholar 

  30. Munhoz TN, Santos IS, Barros AJD, Anselmi L, Barros FC, Matijasevich A. Perinatal and postnatal risk factors for disruptive mood dysregulation disorder at age 11: 2004 Pelotas Birth Cohort Study. J Affect Disord. 2017;215:263–8.

    PubMed  PubMed Central  Google Scholar 

  31. Lovejoy MC, Graczyk PA, O’Hare E, Neuman G. Maternal depression and parenting behavior: a meta-analytic review. Clin Psychol Rev. 2000;20:561–92.

    CAS  PubMed  Google Scholar 

  32. Jaser SS, Fear JM, Reeslund KL, Champion JE, Reising MM, Compas BE. Maternal sadness and adolescents’ responses to stress in offspring of mothers with and without a history of depression. J Clin Child Adolesc Psychol. 2008;37:736–46.

    PubMed  PubMed Central  Google Scholar 

  33. Brennan PA, Le Brocque R, Hammen C. Maternal depression, parent-child relationships, and resilient outcomes in adolescence. J Am Acad Child Adolesc Psychiatry. 2003;42:1469–77.

    PubMed  Google Scholar 

  34. Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, Yin L, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry. 2012;69:E1–8.

    PubMed  Google Scholar 

  35. Grote NK, Bridge JA, Gavin AR, Melville JL, Iyengar S, Katon WJ. A meta-analysis of depression during pregnancy and the risk of preterm birth, low birth weight, and intrauterine growth restriction. Arch Gen Psychiatry. 2010;67:1012–24.

    PubMed  PubMed Central  Google Scholar 

  36. Jarde A, Morais M, Kingston D, Giallo R, MacQueen GM, Giglia L, et al. Neonatal outcomes in women with untreated antenatal depression compared with women without depression. JAMA Psychiatry. 2016;73:826.

    PubMed  Google Scholar 

  37. O’Donnell KJ, Meaney MJ. Fetal origins of mental health: the developmental origins of health and disease hypothesis. Am J Psychiatry. 2017;174:319–28.

    PubMed  Google Scholar 

  38. Kendler KS, Gatz M, Gardner CO, Pedersen NL. A Swedish National Twin Study of Lifetime Major Depression. Am J Psychiatry J Psychiatry. 2006;1631:109–14.

    Google Scholar 

  39. Reising MM, Watson KH, Hardcastle EJ, Merchant MJ, Roberts L, Forehand R, et al. Parental depression and economic disadvantage: the role of parenting in associations with internalizing and externalizing symptoms in children and adolescents. J Child Fam Stud. 2013;22. https://doi.org/10.1007/s10826-012-9582-4.

    Google Scholar 

  40. Couto TCE, Brancaglion MYM, Alvim-Soares A, Moreira L, Garcia FD, Nicolato R, et al. Postpartum depression: a systematic review of the genetics involved. World J Psychiatry. 2015;5:103–11.

    PubMed  PubMed Central  Google Scholar 

  41. Mahon PB, Payne JL, MacKinnon DF, Mondimore FM, Goes FS, Schweizer B, et al. Genome-wide linkage and follow-up association study of postpartum mood symptoms. Am J Psychiatry. 2009;166:1229–37.

    PubMed  PubMed Central  Google Scholar 

  42. Viktorin A, Meltzer-Brody S, Kuja-Halkola R, Sullivan PF, Landén M, Lichtenstein P, et al. Heritability of perinatal depression and genetic overlap with nonperinatal depression. Am J Psychiatry. 2016;173:158–65.

    PubMed  Google Scholar 

  43. Rice F, Harold GT, Boivin J, van den Bree M, Hay DF, Thapar A. The links between prenatal stress and offspring development and psychopathology: disentangling environmental and inherited influences. Psychol Med. 2010;40:335–45.

    CAS  PubMed  Google Scholar 

  44. Nomura Y, Wickramaratne PJ, Pilowsky DJ, Newcorn JH, Bruder-Costello B, Davey C, et al. Low birth weight and risk of affective disorders and selected medical illness in offspring at high and low risk for depression. Compr Psychiatry. 2007;48:470–8.

    PubMed  PubMed Central  Google Scholar 

  45. Pluess M, Velders FP, Belsky J, van IJzendoorn MH, Bakermans-Kranenburg MJ, Jaddoe VWV, et al. Serotonin transporter polymorphism moderates effects of prenatal maternal anxiety on infant negative emotionality. Biol Psychiatry. 2011;69:520–5.

    CAS  PubMed  Google Scholar 

  46. Wazana A, Moss E, Jolicoeur-Martineau A, Graffi J, Tsabari G, Lecompte V, et al. The interplay of birth weight, dopamine receptor D4 gene (DRD4), and early maternal care in the prediction of disorganized attachment at 36 months of age. Dev Psychopathol. 2015;27:1145–61.

    PubMed  PubMed Central  Google Scholar 

  47. Qiu A, Shen M, Buss C, Chong Y-S, Kwek K, Saw S-M, et al. Effects of antenatal maternal depressive symptoms and socio-economic status on neonatal brain development are modulated by genetic risk. Cereb Cortex. 2017;27:3080–92.

    PubMed  PubMed Central  Google Scholar 

  48. Silveira PP, Pokhvisneva I, Parent C, Cai S, Rema ASS, Broekman BFP, et al. Cumulative prenatal exposure to adversity reveals associations with a broad range of neurodevelopmental outcomes that are moderated by a novel, biologically informed polygenetic score based on the serotonin transporter solute carrier family C6, member 4 (SLC6A4) gene expression. Dev Psychopathol. 2017;29:1601–17.

    PubMed  Google Scholar 

  49. Belsky J, Pokhvisneva I, Rema ASS, Broekman BFP, Pluess M, O’Donnell KJ, et al. Polygenic differential susceptibility to prenatal adversity. Dev Psychopathol. 2018;7:1–3.

  50. Cattaneo A, Cattane N, Malpighi C, Czamara D, Suarez A, Mariani N, et al. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol Psychiatry. 2018;4:1.

  51. Pawlby S, Hay D, Sharp D, Cerith SW, Pariante CM. Antenatal depression and offspring psychopathology: the influence of childhood maltreatment. Br J Psychiatry. 2011;199:106–12.

    PubMed  Google Scholar 

  52. Plant DT, Barker ED, Waters CS, Pawlby S, Pariante CM. Intergenerational transmission of maltreatment and psychopathology: the role of antenatal depression. Psychol Med. 2013;43:519–28.

    CAS  PubMed  Google Scholar 

  53. Lereya ST, Wolke D. Prenatal family adversity and maternal mental health and vulnerability to peer victimisation at school. J Child Psychol Psychiatry. 2013;54:644–52.

    PubMed  Google Scholar 

  54. Paulzen M, Goecke TW, Stickeler E, Gründer G, Schoretsanitis G. Sertraline in pregnancy – therapeutic drug monitoring in maternal blood, amniotic fluid and cord blood. J Affect Disord. 2017;212:1–6.

    CAS  PubMed  Google Scholar 

  55. Koren G. SSRIs in pregnancy--are they safe? Pediatr Res. 2002;51:424–5.

    PubMed  Google Scholar 

  56. Bakker MK, Kölling P, van den Berg PB, de Walle HEK, de Jong van den Berg LTW. Increase in use of selective serotonin reuptake inhibitors in pregnancy during the last decade, a population-based cohort study from the Netherlands. Br J Clin Pharmacol. 2008;65:600–6.

    PubMed  Google Scholar 

  57. Cooper WO, Willy ME, Pont SJ, Ray WA, Pirraglia PA, Stafford RS, et al. Increasing use of antidepressants in pregnancy. Am J Obstet Gynecol. 2007;196:544.e1–5.

    Google Scholar 

  58. Mcallister-Williams RH, Baldwin DS, Cantwell R. British Association for Psychopharmacology consensus guidance on the use of psychotropic medication preconception, in pregnancy and postpartum 2017. J Psychopharmacol Hampsh Perinat Ment Heal Serv. 2017. https://doi.org/10.1177/0269881117699361.

    PubMed  Google Scholar 

  59. Grigoriadis S, VonderPorten EH, Mamisashvili L, Tomlinson G, Dennis C-L, Koren G, et al. The impact of maternal depression during pregnancy on perinatal outcomes: a systematic review and meta-analysis. J Clin Psychiatry. 2013;74:e321–41.

    PubMed  Google Scholar 

  60. Oberlander TF, Warburton W, Misri S, Aghajanian J, Hertzman C. Effects of timing and duration of gestational exposure to serotonin reuptake inhibitor antidepressants: population-based study. Br J Psychiatry. 2008;192:338–43.

    PubMed  Google Scholar 

  61. Moses-Kolko EL, Bogen D, Perel J, Bregar A, Uhl K, Levin B, et al. Neonatal signs after late in utero exposure to serotonin reuptake inhibitors: literature review and implications for clinical applications. JAMA. 2005;293:2372–83.

    CAS  PubMed  Google Scholar 

  62. Levinson-Castiel R, Merlob P, Linder N, Sirota L, Klinger G. Neonatal abstinence syndrome after in utero exposure to selective serotonin reuptake inhibitors in term infants. Arch Pediatr Adolesc Med. 2006;160:173–6.

    PubMed  Google Scholar 

  63. Galbally M, Lewis AJ, Lum J, Buist A. Serotonin discontinuation syndrome following in utero exposure to antidepressant medication: prospective controlled study. Aust N Z J Psychiatry. 2009;43:846–54.

    PubMed  Google Scholar 

  64. Monk C, Fitelson EM, Werner E. Mood disorders and their pharmacological treatment during pregnancy: Is the future child affected? Pediatr Res. 2011;69:3R–10.

    PubMed  PubMed Central  Google Scholar 

  65. Van den Bergh BRH, Mulder EJH, Mennes M, Glover V. Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: links and possible mechanisms. A review. Neurosci Biobehav Rev. 2005;29:237–58.

    PubMed  Google Scholar 

  66. Casper RC, Fleisher BE, Lee-Ancajas JC, Gilles A, Gaylor E, DeBattista A, et al. Follow-up of children of depressed mothers exposed or not exposed to antidepressant drugs during pregnancy. J Pediatr. 2003;142:402–8.

    CAS  PubMed  Google Scholar 

  67. Pedersen LH, Henriksen TB, Olsen J. Fetal exposure to antidepressants and normal milestone development at 6 and 19 months of age. Pediatrics. 2010;125:e600–8.

    PubMed  Google Scholar 

  68. Previti G, Pawlby S, Chowdhury S, Aguglia E, Pariante CM. Neurodevelopmental outcome for offspring of women treated for antenatal depression: a systematic review. Arch Women’s Ment Health. 2014;17:471–83.

    Google Scholar 

  69. Austin M-P, Karatas JC, Mishra P, Christl B, Kennedy D, Oei J. Infant neurodevelopment following in utero exposure to antidepressant medication. Acta Paediatr. 2013;102:n/a–n/a.

    Google Scholar 

  70. Nulman I, Koren G, Rovet J, Barrera M, Pulver A, Streiner D, et al. Neurodevelopment of children following prenatal exposure to venlafaxine, selective serotonin reuptake inhibitors, or untreated maternal depression. Am J Psychiatry. 2012;169:1165–74.

    PubMed  Google Scholar 

  71. Cohen LS, Altshuler LL, Harlow BL, Nonacs R, Newport DJ, Viguera AC, et al. Relapse of major depression during pregnancy in women who maintain or discontinue antidepressant treatment. JAMA. 2006;295:499.

    CAS  PubMed  Google Scholar 

  72. Robertson E, Grace S, Wallington T, Stewart DE. Antenatal risk factors for postpartum depression: a synthesis of recent literature. Gen Hosp Psychiatry. 2004;26:289–95.

    PubMed  Google Scholar 

  73. Payne JL. Psychopharmacology in pregnancy and breastfeeding. Psychiatr Clin North Am. 2017;40:217–38.

    PubMed  Google Scholar 

  74. Pariante CM. Depression and antidepressants in pregnancy: Molecular and psychosocial mechanisms affecting offspring’s physical and mental health. Neuropsychopharmacology. 2015;40:246–7.

    PubMed Central  Google Scholar 

  75. Ornoy A. Neurobehavioral risks of SSRIs in pregnancy: comparing human and animal data. Reprod Toxicol. 2017. https://doi.org/10.1016/j.reprotox.2017.05.003.

    CAS  PubMed  Google Scholar 

  76. Latendresse G, Elmore C, Deneris A. Selective serotonin reuptake inhibitors as first-line antidepressant therapy for perinatal depression. J Midwifery Womens Health. 2017. https://doi.org/10.1111/jmwh.12607.

    Google Scholar 

  77. Newman L, Judd F, Olsson CA, Castle D, Bousman C, Sheehan P, et al. Early origins of mental disorder - risk factors in the perinatal and infant period. BMC Psychiatry. 2016;16:270.

    PubMed  PubMed Central  Google Scholar 

  78. Champagne FA. Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol. 2008;29:386–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bowers ME, Yehuda R. Intergenerational Transmission of Stress in Humans. Neuropsychopharmacology. 2016;41:232–44.

    PubMed  Google Scholar 

  80. Essex MJ, Boyce WT, Hertzman C, Lam LL, Armstrong JM, Neumann SMA, et al. Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence. Child Dev. 2013;84:58–75.

    PubMed  PubMed Central  Google Scholar 

  81. Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–54.

    CAS  PubMed  Google Scholar 

  82. Champagne FA, Weaver ICG, Diorio J, Dymov S, Szyf M, Meaney MJ. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology. 2006;147:2909–15.

    CAS  PubMed  Google Scholar 

  83. Franklin TB, Russig H, Weiss IC, Gräff J, Linder N, Michalon A, et al. Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry. 2010;68:408–15.

    PubMed  Google Scholar 

  84. Szyf M, Bick J. DNA methylation: a mechanism for embedding early life experiences in the genome. Child Dev. 2013;84:49–57.

    PubMed  Google Scholar 

  85. Sureshchandra S, Wilson RM, Rais M, Marshall NE, Purnell JQ, Thornburg KL, et al. Maternal pregravid obesity remodels the dna methylation landscape of cord blood monocytes disrupting their inflammatory program. J Immunol. 2017;199:2729–44.

    CAS  PubMed  Google Scholar 

  86. van Otterdijk SD, Binder AM, Michels KB. Locus-specific DNA methylation in the placenta is associated with levels of pro-inflammatory proteins in cord blood and they are both independently affected by maternal smoking during pregnancy. Epigenetics. 2017;12:875–85.

    PubMed  PubMed Central  Google Scholar 

  87. Schlinzig T, Johansson S, Gunnar A, Ekström T, Norman M. Epigenetic modulation at birth - altered DNA-methylation in white blood cells after Caesarean section. Acta Paediatr. 2009;98:1096–9.

    CAS  PubMed  Google Scholar 

  88. Toth M. Mechanisms of non-genetic inheritance and psychiatric disorders. Neuropsychopharmacology. 2015;40:129–40.

    PubMed  Google Scholar 

  89. Bergink V, Gibney SM, Drexhage HA. Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biol Psychiatry. 2014;75:324–31.

    CAS  PubMed  Google Scholar 

  90. Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol. 2001;185:61–71.

    CAS  PubMed  Google Scholar 

  91. Seckl JR. Prenatal glucocorticoids and long-term programming. Eur J Endocrinol. 2004;151(Suppl 3):U49–62.

    CAS  PubMed  Google Scholar 

  92. Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007;3:479–88.

    CAS  PubMed  Google Scholar 

  93. Cottrell EC, Seckl J. Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci. 2009;3:19.

    PubMed  PubMed Central  Google Scholar 

  94. Reynolds RM. Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis – 2012 Curt Richter Award Winner. Psychoneuroendocrinology. 2013;38:1–11.

    CAS  PubMed  Google Scholar 

  95. Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol. 2014;10:391–402.

    CAS  PubMed  Google Scholar 

  96. Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 2: mechanisms. Nat Rev Endocrinol. 2014;10:403–11.

    CAS  PubMed  Google Scholar 

  97. Glover V. Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. Adv Neurobiol. 2015;10:269–83.

  98. Rich-Edwards JW, Mohllajee AP, Kleinman K, Hacker MR, Majzoub J, Wright RJ, et al. Elevated midpregnancy corticotropin-releasing hormone is associated with prenatal, but not postpartum, maternal depression. J Clin Endocrinol Metab. 2008;93:1946–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. O’Connor TG, Tang W, Gilchrist MA, Moynihan JA, Pressman EK, Blackmore ER. Diurnal cortisol patterns and psychiatric symptoms in pregnancy: short-term longitudinal study. Biol Psychol. 2014;96:35–41.

    PubMed  Google Scholar 

  100. O’Keane V, Lightman S, Marsh M, Pawlby S, Papadopoulos AS, Taylor A, et al. Increased pituitary-adrenal activation and shortened gestation in a sample of depressed pregnant women: a pilot study. J Affect Disord. 2011;130:300–5.

    PubMed  Google Scholar 

  101. Gutteling BM, de Weerth C, Buitelaar JK. Short communicationmaternal prenatal stress and 4–6 year old children’s salivary cortisol concentrations pre- and post-vaccination. Stress. 2004;7:257–60.

    CAS  PubMed  Google Scholar 

  102. Gutteling BM, Weerth C, de, Buitelaar JK. Prenatal stress and children’s cortisol reaction to the first day of school. Psychoneuroendocrinology. 2005;30:541–9.

    CAS  PubMed  Google Scholar 

  103. O’Connor TG, Bergman K, Sarkar P, Glover V. Prenatal cortisol exposure predicts infant cortisol response to acute stress. Dev Psychobiol. 2013;55:145–55.

    PubMed  Google Scholar 

  104. Huizink AC, Robles de Medina PG, Mulder EJH, Visser GHA, Buitelaar JK. Stress during pregnancy is associated with developmental outcome in infancy. J Child Psychol Psychiatry. 2003;44:810–8.

    PubMed  Google Scholar 

  105. de Weerth C, van Hees Y, Buitelaar JK. Prenatal maternal cortisol levels and infant behavior during the first 5 months. Early Hum Dev. 2003;74:139–51.

    PubMed  Google Scholar 

  106. DAVIS EP, Glynn LM, SCHETTER CD, Hobel C, CHICZ-DEMET A, SANDMAN CA. Prenatal exposure to maternal depression and cortisol influences infant temperament. J Am Acad Child Adolesc Psychiatry. 2007;46:737–46.

    Google Scholar 

  107. Davis EP, Sandman CA. The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Dev. 2010;81:131–48.

    PubMed  PubMed Central  Google Scholar 

  108. O’Donnell KJ, Glover V, Jenkins J, Browne D, Ben-Shlomo Y, Golding J, et al. Prenatal maternal mood is associated with altered diurnal cortisol in adolescence. Psychoneuroendocrinology. 2013;38:1630–8.

    PubMed  PubMed Central  Google Scholar 

  109. Weinstock M. The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav Immun. 2005;19:296–308.

    CAS  PubMed  Google Scholar 

  110. Cottrell EC, Seckl JR. Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci. 2009;3:19.

    PubMed  PubMed Central  Google Scholar 

  111. Pariante CM. Depression during pregnancy: molecular regulations of mothers’ and children’s behaviour. Biochem Soc Trans. 2014;42:582–6.

    CAS  PubMed  Google Scholar 

  112. Saif Z, Hodyl NA, Hobbs E, Tuck AR, Butler MS, Osei-Kumah A, et al. The human placenta expresses multiple glucocorticoid receptor isoforms that are altered by fetal sex, growth restriction and maternal asthma. Placenta. 2014;35:260–8.

    CAS  PubMed  Google Scholar 

  113. Turecki G, Meaney MJ. Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review. Biol Psychiatry. 2016;79:87–96.

    CAS  PubMed  Google Scholar 

  114. Smart C, Strathdee G, Watson S, Murgatroyd C, McAllister-Williams RH. Early life trauma, depression and the glucocorticoid receptor gene – an epigenetic perspective. Psychol Med. 2015;45:3393–410.

    CAS  PubMed  Google Scholar 

  115. Chen ES, Ernst C, Turecki G. The epigenetic effects of antidepressant treatment on human prefrontal cortex BDNF expression. Int J Neuropsychopharmacol. 2011;14:427–9.

    CAS  PubMed  Google Scholar 

  116. Alt SR, Turner JD, Klok MD, Meijer OC, EAJF Lakke, DeRijk RH, et al. Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed. Psychoneuroendocrinology. 2010;35:544–56.

    CAS  PubMed  Google Scholar 

  117. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonté B, Szyf M, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12:342–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ewald ER, Wand GS, Seifuddin F, Yang X, Tamashiro KL, Potash JB, et al. Alterations in DNA methylation of Fkbp5 as a determinant of blood–brain correlation of glucocorticoid exposure. Psychoneuroendocrinology. 2014;44:112–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16:33–41.

    CAS  PubMed  Google Scholar 

  120. Walton E, Hass J, Liu J, Roffman JL, Bernardoni F, Roessner V, et al. Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. Schizophr Bull. 2016;42:406–14.

    PubMed  Google Scholar 

  121. Mulligan C, D’Errico N, Stees J, Hughes D. Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics. 2012;7:853–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Radtke KM, Ruf M, Gunter HM, Dohrmann K, Schauer M, Meyer A, et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl Psychiatry. 2011;1:e21.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Katz ER, Stowe ZN, Newport DJ, Kelley ME, Pace TW, Cubells JF, et al. Regulation of mRNA expression encoding chaperone and co-chaperone proteins of the glucocorticoid receptor in peripheral blood: association with depressive symptoms during pregnancy. Psychol Med. 2012;42:943–56.

    CAS  PubMed  Google Scholar 

  124. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997;277:1659–62.

    CAS  PubMed  Google Scholar 

  125. Laplante P, Diorio J, Meaney MJ. Serotonin regulates hippocampal glucocorticoid receptor expression via a 5-HT7 receptor. Brain Res Dev Brain Res. 2002;139:199–203.

    CAS  PubMed  Google Scholar 

  126. Weaver ICG, D’Alessio AC, Brown SE, Hellstrom IC, Dymov S, Sharma S, et al. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J Neurosci. 2007;27:1756–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Anacker C, Cattaneo A, Luoni A, Musaelyan K, Zunszain PA, Milanesi E, et al. Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology. 2013;38:872–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Anacker C, Cattaneo A, Musaelyan K, Zunszain PA, Horowitz M, Molteni R, et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc Natl Acad Sci. 2013;110:8708–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Seth S, Lewis AJ, Saffery R, Lappas M, Galbally M. Maternal prenatal mental health and placental 11β-hsd2 gene expression: initial findings from the mercy pregnancy and emotional wellbeing study. Int J Mol Sci. 2015;16:27482–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. O’Donnell KJ, Bugge Jensen A, Freeman L, Khalife N, O’Connor TG, Glover V. Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology. 2012;37:818–26.

    PubMed  Google Scholar 

  131. Mikelson C, Kovach MJ, Troisi J, Symes S, Adair D, Miller RK, et al. Placental 11β-Hydroxysteroid dehydrogenase type 2 expression: Correlations with birth weight and placental metal concentrations. Placenta. 2015;36:1212–7.

    CAS  PubMed  Google Scholar 

  132. Holmes MC, Abrahamsen CT, French KL, Paterson JM, Mullins JJ, Seckl JR. The mother or the fetus? 11beta-hydroxysteroid dehydrogenase type 2 null mice provide evidence for direct fetal programming of behavior by endogenous glucocorticoids. J Neurosci. 2006;26:3840–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Welberg LAM, Seckl JR, Holmes MC. Inhibition of 11β-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur J Neurosci. 2000;12:1047–54.

    CAS  PubMed  Google Scholar 

  134. Montano MM, Wang MH. vom Saal FS. Sex differences in plasma corticosterone in mouse fetuses are mediated by differential placental transport from the mother and eliminated by maternal adrenalectomy or stress. J Reprod Fertil. 1993;99:283–90.

    CAS  PubMed  Google Scholar 

  135. Lester BM, Marsit CJ, Giarraputo J, Hawes K, LaGasse LL, Padbury JF. Neurobehavior related to epigenetic differences in preterm infants. Epigenomics. 2015;7:1123–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Magiakou MA, Mastorakos G, Rabin D, Dubbert B, Gold PW, Chrousos GP. Hypothalamic corticotropin-releasing hormone suppression during the postpartum period: implications for the increase in psychiatric manifestations at this time. J Clin Endocrinol Metab. 1996;81:1912–7.

    CAS  PubMed  Google Scholar 

  137. Pariante CM, Nemeroff CB Unipolar depression. In: Handbook of clinical neurology. Elsevier, Amsterdam, The Netherlands 2012. pp 239–49.

    Google Scholar 

  138. Engineer N, Darwin L, Nishigandh D, Ngianga-Bakwin K, Smith SC, Grammatopoulos DK. Association of glucocorticoid and type 1 corticotropin-releasing hormone receptors gene variants and risk for depression during pregnancy and post-partum. J Psychiatr Res. 2013;47:1166–73.

    PubMed  Google Scholar 

  139. Stergiakouli E, JAC Sterne, Smith GD. Letter toeditor: Failure to replicate the association of glucocorticoid and type 1 corticotropin-releasing hormone receptors gene variants with risk of depression during pregnancy and post-partum reported by Engineer et al. (2013). J Psychiatr Res. 2014;56:168–70.

  140. Li XQ, Zhu P, Myatt L, Sun K. Roles of glucocorticoids in human parturition: a controversial fact? Placenta. 2014;35:291–6.

    PubMed  Google Scholar 

  141. Sasaki A, Liotta AS, Luckey MM, Margioris AN, Suda T, Krieger DT. Immunoreactive corticotropin-releasing factor is present in human maternal plasma during the third trimester of pregnancy. J Clin Endocrinol Metab. 1984;59:812–4.

    CAS  PubMed  Google Scholar 

  142. Meltzer-Brody S. New insights into perinatal depression: pathogenesis and treatment during pregnancy and postpartum. Dialog- Clin Neurosci. 2011;13:89–100.

    Google Scholar 

  143. Osborne S, Biaggi A, Chua TE, Du Preez A, Hazelgrove K, Nikkheslat N, et al. Antenatal depression programs cortisol stress reactivity in offspring through increased maternal inflammation and cortisol in pregnancy: The Psychiatry Research and Motherhood - Depression (PRAM-D) Study. Psychoneuroendocrinology. 2018. https://doi.org/10.1016/j.psyneuen.2018.06.017.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sandman CA, Wadhwa P, Glynn L, Chicz-Demet A, Porto M, Garite TJ. Corticotrophin-releasing hormone and fetal responses in human pregnancy. Ann N Y Acad Sci. 1999;897:66–75.

    CAS  PubMed  Google Scholar 

  145. Alves E, Fielder A, Ghabriel N, Sawyer M, Buisman-Pijlman FTA. Early social environment affects the endogenous oxytocin system: a review and future directions. Front Endocrinol (Lausanne). 2015;6:32.

    Google Scholar 

  146. Feldman R, Weller A, Zagoory-Sharon O, Levine A. Evidence for a neuroendocrinological foundation of human affiliation: plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding. Psychol Sci. 2007;18:965–70.

    PubMed  Google Scholar 

  147. Eapen V, Dadds M, Barnett B, Kohlhoff J, Khan F, Radom N, et al. Separation anxiety, attachment and inter-personal representations: disentangling the role of oxytocin in the perinatal period. PLoS ONE. 2014;9:e107745.

    PubMed  PubMed Central  Google Scholar 

  148. Skrundz M, Bolten M, Nast I, Hellhammer DH, Meinlschmidt G. Plasma oxytocin concentration during pregnancy is associated with development of postpartum depression. Neuropsychopharmacology. 2011;36:1886–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Mileva-Seitz V, Steiner M, Atkinson L, Meaney MJ, Levitan R, Kennedy JL, et al. Interaction between oxytocin genotypes and early experience predicts quality of mothering and postpartum mood. PLoS ONE. 2013;8:e61443.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Mah BL, Bakermans-Kranenburg MJ, Van IJzendoorn MH, Smith R. Oxytocin promotes protective behavior in depressed mothers: a pilot study with the enthusiastic stranger paradigm. Depress Anxiety. 2015;32:76–81.

    CAS  PubMed  Google Scholar 

  151. Mah BL, Van Ijzendoorn MH, Out D, Smith R, Bakermans-Kranenburg MJ. The effects of intranasal oxytocin administration on sensitive caregiving in mothers with postnatal depression. Child Psychiatry Hum Dev. 2017;48:308–15.

    PubMed  Google Scholar 

  152. Mah BL. Oxytocin, postnatal depression, and parenting. Harv Rev Psychiatry. 2016;24:1–13.

    PubMed  Google Scholar 

  153. Kroll-Desrosiers AR, Nephew BC, Babb JA, Guilarte-Walker Y, Moore Simas TA, Deligiannidis KM. Association of peripartum synthetic oxytocin administration and depressive and anxiety disorders within the first postpartum year. Depress Anxiety. 2017;34:137–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Leng G, Ludwig M. Intranasal oxytocin: myths and delusions. Biol Psychiatry. 2016;79:243–50.

    CAS  PubMed  Google Scholar 

  155. Feldman R, Gordon I, Influs M, Gutbir T, Ebstein RP. Parental oxytocin and early caregiving jointly shape children’s oxytocin response and social reciprocity. Neuropsychopharmacology. 2013;38:1154–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Pratt M, Apter-Levi Y, Vakart A, Feldman M, Fishman R, Feldman T, et al. Maternal depression and child oxytocin response; moderation by maternal oxytocin and relational behavior. Depress Anxiety. 2015;32:635–46.

    CAS  PubMed  Google Scholar 

  157. Feldman R, Gordon I, Influs M, Gutbir T, Ebstein RP. Parental oxytocin and early caregiving jointly shape children’s oxytocin response and social reciprocity. Neuropsychopharmacology. 2013;38:1154–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Atzil S, Hendler T, Feldman R. Specifying the neurobiological basis of human attachment: brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology. 2011;36:2603–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Strathearn L, Fonagy P, Amico J, Montague PR. Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology. 2009;34:2655–66.

    CAS  PubMed  Google Scholar 

  160. Heim C, Young LJ, Newport DJ, Mletzko T, Miller AH, Nemeroff CB. Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol Psychiatry. 2009;14:954–8.

    CAS  PubMed  Google Scholar 

  161. Smearman EL, Almli LM, Conneely KN, Brody GH, Sales JM, Bradley B, et al. Oxytocin receptor genetic and epigenetic variations: association with child abuse and adult psychiatric symptoms. Child Dev. 2016;87:122–34.

    PubMed  PubMed Central  Google Scholar 

  162. Kimmel M, Clive M, Gispen F, Guintivano J, Brown T, Cox O, et al. Oxytocin receptor DNA methylation in postpartum depression. Psychoneuroendocrinology. 2016;69:150–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Unternaehrer E, Bolten M, Nast I, Staehli S, Meyer AH, Dempster E, et al. Maternal adversities during pregnancy and cord blood oxytocin receptor (OXTR) DNA methylation. Soc Cogn Affect Neurosci. 2016;11:1460–70.

    PubMed  PubMed Central  Google Scholar 

  164. Cecil CAM, Lysenko LJ, Jaffee SR, Pingault J-B, Smith RG, Relton CL, et al. Environmental risk, oxytocin receptor gene (OXTR) methylation and youth callous-unemotional traits: a 13-year longitudinal study. Mol Psychiatry. 2014;19:1071–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Unternaehrer E, Luers P, Mill J, Dempster E, Meyer AH, Staehli S, et al. Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF) after acute psychosocial stress. Transl Psychiatry. 2012;2:e150.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Henriques TP, Szawka RE, Diehl LA, de Souza MA, Corrêa CN, Aranda BCC, et al. Stress in neonatal rats with different maternal care backgrounds: monoaminergic and hormonal responses. Neurochem Res. 2014;39:2351–9.

    CAS  PubMed  Google Scholar 

  167. Champagne FA, Meaney MJ. Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biol Psychiatry. 2006;59:1227–35.

    CAS  PubMed  Google Scholar 

  168. Sabihi S, Dong SM, Durosko NE, Leuner B. Oxytocin in the medial prefrontal cortex regulates maternal care, maternal aggression and anxiety during the postpartum period. Front Behav Neurosci. 2014;8:258.

    PubMed  PubMed Central  Google Scholar 

  169. Bale TL, Davis AM, Auger AP, Dorsa DM, Mccarthy MM. CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. http://www.jneurosci.org/content/jneuro/21/7/2546.full.pdf. Accessed 19 Mar 2017.

  170. Bloch M, Schmidt PJ, Danaceau M, Murphy J, Nieman L, Rubinow DR. Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry. 2000;157:924–30.

    CAS  PubMed  Google Scholar 

  171. Mehta D, Newport DJ, Frishman G, Kraus L, Rex-Haffner M, Ritchie JC, et al. Early predictive biomarkers for postpartum depression point to a role for estrogen receptor signaling. Psychol Med. 2014;44:2309–22.

    CAS  PubMed  Google Scholar 

  172. Guintivano J, Arad M, Gould TD, Payne JL, Kaminsky ZA. Antenatal prediction of postpartum depression with blood DNA methylation biomarkers. Mol Psychiatry. 2014;19:560–7.

    CAS  PubMed  Google Scholar 

  173. Mccarthy MM, McDonald CH, Brooks PJ, Goldman D. An anxiolytic action of oxytocin is enhanced by estrogen in the mouse. Physiol Behav. 1996;60:1209–15.

    CAS  PubMed  Google Scholar 

  174. Young LJ, Wang Z, Donaldson R, Rissman EF. Estrogen receptor alpha is essential for induction of oxytocin receptor by estrogen. Neuroreport. 1998;9:933–6.

    CAS  PubMed  Google Scholar 

  175. Champagne F, Diorio J, Sharma S, Meaney MJ. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc Natl Acad Sci USA. 2001;98:12736–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Qiu A, Anh TT, Li Y, Chen H, Rifkin-Graboi A, Broekman BFP, et al. Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Transl Psychiatry. 2015;5:e508.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Soe NN, Wen DJ, Poh JS, Chong Y-S, Broekman BF, Chen H, et al. Perinatal maternal depressive symptoms alter amygdala functional connectivity in girls. Hum Brain Mapp. 2017. https://doi.org/10.1002/hbm.23873.

    PubMed  PubMed Central  Google Scholar 

  178. Buss C, Davis EP, Muftuler LT, Head K, Sandman CA. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children. Psychoneuroendocrinology. 2010;35:141–53.

    PubMed  PubMed Central  Google Scholar 

  179. Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB. The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology. 2008;33:693–710.

    CAS  PubMed  Google Scholar 

  180. Sandman CA, Buss C, Head K, Davis EP. Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood. Biol Psychiatry. 2015;77:324–34.

    PubMed  Google Scholar 

  181. Field T, Diego M, Dieter J, Hernandez-Reif M, Schanberg S, Kuhn C, et al. Prenatal depression effects on the fetus and the newborn. Infant Behav Dev. 2004;27:216–29.

    Google Scholar 

  182. Belovicova K, Bogi E, Koprdova R, Ujhazy E, Mach M, Dubovicky M. Effects of venlafaxine and chronic unpredictable stress on behavior and hippocampal neurogenesis of rat dams. Neuro Endocrinol Lett. 2017;38:19–26.

  183. Talati A, Odgerel Z, Wickramaratne PJ, Weissman MM. Brain derived neurotrophic factor moderates associations between maternal smoking during pregnancy and offspring behavioral disorders. Psychiatry Res. 2016;245:387–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ, et al. candidate genes expression profile associated with antidepressants response in the GENDEP Study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology. 2013;38:377–85.

    CAS  PubMed  Google Scholar 

  185. Van den Hove DLA, Steinbusch HWM, Scheepens A, Van de Berg WDJ, Kooiman LAM, Boosten BJG, et al. Prenatal stress and neonatal rat brain development. Neuroscience. 2006;137:145–55.

    PubMed  Google Scholar 

  186. Roceri M, Hendriks W, Racagni G, Ellenbroek BA, Riva MA. Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol Psychiatry. 2002;7:609–16.

    CAS  PubMed  Google Scholar 

  187. Wang Q, Shao F, Wang W. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats. Front Mol Neurosci. 2015;8:49.

    PubMed  PubMed Central  Google Scholar 

  188. Leff-Gelman P, Mancilla-Herrera I, Flores-Ramos M, Cruz-Fuentes C, Reyes-Grajeda JP, García-Cuétara MDP, et al. The immune system and the role of inflammation in perinatal depression. Neurosci Bull. 016;32:398–420.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012;37:137–62.

    CAS  PubMed  Google Scholar 

  190. Krause D, Jobst A, Kirchberg F, Kieper S, Härtl K, Kästner R, et al. Prenatal immunologic predictors of postpartum depressive symptoms: a prospective study for potential diagnostic markers. Eur Arch Psychiatry Clin Neurosci. 2014;264. https://doi.org/10.1007/s00406-014-0494-8.

    PubMed  Google Scholar 

  191. Danese A, Caspi A, Williams B, Ambler A, Sugden K, Mika J, et al. Biological embedding of stress through inflammation processes in childhood. Mol Psychiatry. 2011;16:244–6.

    CAS  PubMed  Google Scholar 

  192. Carvalho LA, Torre JP, Papadopoulos AS, Poon L, Juruena MF, Markopoulou K, et al. Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. J Affect Disord. 2013;148:136–40.

    CAS  PubMed  Google Scholar 

  193. Hepgul N, Cattaneo A, Agarwal K, Baraldi S, Borsini A, Bufalino C, et al. Transcriptomics in interferon-α-treated patients identifies inflammation-, neuroplasticity- and oxidative stress-related signatures as predictors and correlates of depression. Neuropsychopharmacology. 2016;41:2502–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Danese A, Moffitt TE, Pariante CM, Ambler A, Poulton R, Caspi A. Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch Gen Psychiatry. 2008;65:409–15.

    PubMed  PubMed Central  Google Scholar 

  195. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry. 2001;58:445–52.

    CAS  PubMed  Google Scholar 

  197. Danese A, Pariante CM, Caspi A, Taylor A, Poulton R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci. 2007;104:1319–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry. 2016;21:642–9.

    CAS  PubMed  Google Scholar 

  199. Pace TWW, Mletzko TC, Alagbe O, Musselman DL, Nemeroff CB, Miller AH, et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry. 2006;163:1630–3.

    PubMed  Google Scholar 

  200. Du Preez A, Leveson J, Zunszain PA, Pariante CM. Inflammatory insults and mental health consequences: does timing matter when it comes to depression? Psychol Med. 2016;46:2041–57.

    PubMed  PubMed Central  Google Scholar 

  201. Christian LM. Effects of stress and depression on inflammatory immune parameters in pregnancy. Am J Obstet Gynecol. 2014;211:275–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Corwin EJ, Pajer K, Paul S, Lowe N, Weber M, McCarthy DO. Bidirectional psychoneuroimmune interactions in the early postpartum period influence risk of postpartum depression. Brain Behav Immun. 2015;49:86–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Walsh K, Basu A, Werner E, Lee S, Feng T, Osborne LM, et al. Associations among child abuse, depression, and interleukin-6 in pregnant adolescents. Psychosom Med. 2016;78:920–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Shelton MM, Schminkey DL, Groer MW. Relationships among prenatal depression, plasma cortisol, and inflammatory cytokines. Biol Res Nurs. 2015;17:295–302.

    CAS  PubMed  Google Scholar 

  205. Edvinsson Å, Bränn E, Hellgren C, Freyhult E, White R, Kamali-Moghaddam M, et al. Lower inflammatory markers in women with antenatal depression brings the M1/M2 balance into focus from a new direction. Psychoneuroendocrinology. 2017;80:15–25.

    CAS  PubMed  Google Scholar 

  206. Graham AM, Rasmussen JM, Rudolph MD, Heim CM, Gilmore JH, Styner M, et al. Maternal systemic interleukin-6 during pregnancy is associated with newborn amygdala phenotypes and subsequent behavior at 2 years of age. Biol Psychiatry. 2018;83:109–19.

    CAS  PubMed  Google Scholar 

  207. Mondelli V, Cattaneo A, Murri MB, Di Forti M, Handley R, Hepgul N, et al. Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis. J Clin Psychiatry. 2011;72:1677–84.

    PubMed  PubMed Central  Google Scholar 

  208. Mondelli V, Ciufolini S, Belvederi Murri M, Bonaccorso S, Di Forti M, Giordano A, et al. Cortisol and inflammatory biomarkers predict poor treatment response in first episode psychosis. Schizophr Bull. 2015;41:1162–70.

    PubMed  PubMed Central  Google Scholar 

  209. Bergink V, Burgerhout KM, Weigelt K, Pop VJ, de Wit H, Drexhage RC, et al. Immune system dysregulation in first-onset postpartum psychosis. Biol Psychiatry. 2013;73:1000–7.

    CAS  PubMed  Google Scholar 

  210. Veen C, Myint AM, Burgerhout KM, Schwarz MJ, Schütze G, Kushner SA, et al. Tryptophan pathway alterations in the postpartum period and in acute postpartum psychosis and depression. J Affect Disord. 2016;189:298–305.

    CAS  PubMed  Google Scholar 

  211. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Wirleitner B, Neurauter G, Schröcksnadel K, Frick B, Fuchs D. Interferon-gamma-induced conversion of tryptophan: immunologic and neuropsychiatric aspects. Curr Med Chem. 2003;10:1581–91.

    CAS  PubMed  Google Scholar 

  213. Badawy AA-B. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep. 2015;35. https://doi.org/10.1042/BSR20150197.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Widner B, Ledochowski M, Fuchs D. Interferon-gamma-induced tryptophan degradation: neuropsychiatric and immunological consequences. Curr Drug Metab. 2000;1:193–204.

    CAS  PubMed  Google Scholar 

  215. Cattaneo A, Macchi F, Plazzotta G, Veronica B, Bocchio-Chiavetto L, Riva MA, et al. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis. Front Cell Neurosci. 2015;9:40.

    PubMed  PubMed Central  Google Scholar 

  216. Plant DT, Pawlby S, Sharp D, Zunszain PA, Pariante CM. Prenatal maternal depression is associated with offspring inflammation at 25 years: a prospective longitudinal cohort study. Transl Psychiatry. 2016;6:e936.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Su K-P, Huang S-Y, Chiu T-H, Huang K-C, Huang C-L, Chang H-C, et al. Omega-3 fatty acids for major depressive disorder during pregnancy: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry. 2008;69:644–51.

    CAS  PubMed  Google Scholar 

  218. Mozurkewich EL, Clinton CM, Chilimigras JL, Hamilton SE, Allbaugh LJ, Berman DR, et al. The mothers, omega-3, and Mental Health Study: a double-blind, randomized controlled trial. Am J Obstet Gynecol. 2013;208:313.e1–313.e9.

    CAS  Google Scholar 

  219. Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P, et al. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children. JAMA. 2010;304:1675.

    CAS  PubMed  Google Scholar 

  220. Borsini A, Alboni S, Horowitz MA, Tojo LM, Cannazza G, Su K-P, et al. Rescue of IL-1β-induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants. Brain Behav Immun. 2017;65:230–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Chlodzinska N, Gajerska M, Bartkowska K, Turlejski K, Djavadian RL. Lipopolysaccharide injected to pregnant mice affects behavior of their offspring in adulthood. Acta Neurobiol Exp (Wars). 2011;71:519–27.

    Google Scholar 

  222. Depino AM. Early prenatal exposure to LPS results in anxiety- and depression-related behaviors in adulthood. Neuroscience. 2015;299:56–65.

    CAS  PubMed  Google Scholar 

  223. Bakos J, Duncko R, Makatsori A, Pirnik Z, Kiss A, Jezova D. Prenatal immune challenge affects growth, behavior, and brain dopamine in offspring. Ann N Y Acad Sci. 2004;1018:281–7.

    CAS  PubMed  Google Scholar 

  224. Posillico CK, Schwarz JM. An investigation into the effects of antenatal stressors on the postpartum neuroimmune profile and depressive-like behaviors. Behav Brain Res. 2016;298:218–28.

    PubMed  Google Scholar 

  225. Bronson SL, Bale TL. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal anti-inflammatory treatment. Endocrinology. 2014;155:2635–46.

    PubMed  PubMed Central  Google Scholar 

  226. Diz-Chaves Y, Astiz M, Bellini MJ, Garcia-Segura LM. Prenatal stress increases the expression of proinflammatory cytokines and exacerbates the inflammatory response to LPS in the hippocampal formation of adult male mice. Brain Behav Immun. 2013;28:196–206.

    CAS  PubMed  Google Scholar 

  227. Diz-Chaves Y, Pernía O, Carrero P, Garcia-Segura LM. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflamm. 2012;9:580.

    Google Scholar 

  228. Vanbesien-Mailliot CCA, Wolowczuk I, Mairesse J, Viltart O, Delacre M, Khalife J, et al. Prenatal stress has pro-inflammatory consequences on the immune system in adult rats. Psychoneuroendocrinology. 2007;32:114–24.

    CAS  PubMed  Google Scholar 

  229. Ślusarczyk J, Trojan E, Głombik K, Chamera K, Roman A, Budziszewska B, et al. Fractalkine attenuates microglial cell activation induced by prenatal stress. Neural Plast. 2016;2016:1–11.

    Google Scholar 

  230. Ślusarczyk J, Trojan E, Wydra K, Głombik K, Chamera K, Kucharczyk M, et al. Beneficial impact of intracerebroventricular fractalkine administration on behavioral and biochemical changes induced by prenatal stress in adult rats: possible role of NLRP3 inflammasome pathway. Biochem Pharmacol. 2016;113:45–56.

    PubMed  Google Scholar 

  231. Barnes J, Mondelli V, Pariante CM. Genetic Contributions of Inflammation to Depression. Neuropsychopharmacology. 2016. https://doi.org/10.1038/npp.2016.169.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

KMS is supported by a Studentship from the Doctoral Training Programme, funded by the Medical Research Council. CMP’s research in perinatal psychiatry has been supported by the Psychiatry Research Trust, and PD’s research in perinatal psychiatry is supported by the Medical Research Foundation, the UK Medical Research Council’s independent charity. Professor Pariante is also supported by ‘Persistent Fatigue Induced by Interferon-alpha: A New Immunological Model for Chronic Fatigue Syndrome’ (MR/J002739/1) and by the grant ‘Immuno-psychiatry: A Consortium to test the Opportunity for Immunotherapeutics in Psychiatry’ (MR/L014815/1), from the Medical Research Council (UK). Additional support has been offered by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’ s College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine M. Pariante.

Ethics declarations

Conflict of interest

CMP and PAZ have received research funding from Johnson & Johnson as part of a program of research on depression and inflammation, and research funding from the Medical Research Council (UK) and the Wellcome Trust for research on depression and inflammation as part of two large consortia that also include Johnson& Johnson, GSK, and Lundbeck. The work presented in this paper is unrelated to this funding. KMS and PD declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawyer, K.M., Zunszain, P.A., Dazzan, P. et al. Intergenerational transmission of depression: clinical observations and molecular mechanisms. Mol Psychiatry 24, 1157–1177 (2019). https://doi.org/10.1038/s41380-018-0265-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0265-4

This article is cited by

Search

Quick links