Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The symptom network structure of depressive symptoms in late-life: Results from a European population study


The network theory conceptualizes mental disorders as complex networks of symptoms influencing each other by creating feedback loops, leading to a self-sustained syndromic constellation. Symptoms central to the network have the greatest impact in sustaining the rest of symptoms. This analysis focused on the network structure of depressive symptoms in late-life because of their distinct etiologic factors, clinical presentation, and outcomes. We analyzed cross-sectional data from wave 2 of the 19 country Survey of Health, Ageing, and Retirement in Europe (SHARE) and included non-institutionalized adults aged 65 years or older (mean age 74 years, 59% females) endorsing at least one depressive symptom on the EURO-D scale for depression (N =8,557). We characterized the network structure of depressive symptoms in late-life and used indices of “strength”, “betweenness”, and “closeness” to identify symptoms central to the network. We used a case-dropping bootstrap procedure to assess network stability. Death wishes, depressed mood, loss of interest, and pessimism had the highest values of centrality. Insomnia, fatigue and appetite changes had lower centrality values. The identified network remained stable after dropping 74.5% of the sample. Sex or age did not significantly influence the network structure. In conclusion, death wishes, depressed mood, loss of interest, and pessimism constitute the “backbone” that sustains depressive symptoms in late-life. Symptoms central to the network of depressive symptoms may be used as targets for novel, focused interventions and in studies investigating neurobiological processes central to late-life depression.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Alexopoulos GS. Depression in the elderly. Lancet. 2005.;365:1961–70.

  2. 2.

    Kok RM, Reynolds CF. Management of depression in older adults. JAMA. 2017;317:2114.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Borsboom D. A network theory of mental disorders. World Psychiatry. 2017;16:5–13.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Cramer AO, van Borkulo CD, Giltay EJ, van der Maas HL, Kendler KS, Scheffer M, et al. Major depression as a complex dynamic system. PLoS ONE. 2016;11:e0167490.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Van Borkulo CD, Borsboom D, Epskamp S, Blanken TF, Boschloo L, Schoevers RA et al. A new method for constructing networks from binary data. Sci Rep. 2014;4.

  6. 6.

    Borsboom D, Cramer AOJ. Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol. 2013;9:91–121.

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Epskamp S, Kruis J, Marsman M. Estimating psychopathological networks: Be careful what you wish for. PLoS ONE. 2017;12:e0179891.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Fried EI, Bockting C, Arjadi R, Borsboom D, Amshoff M, Cramer AOJ, et al. From loss to loneliness: The relationship between bereavement and depressive symptoms. J Abnorm Psychol. 2015;124:256–65.

    PubMed  Article  Google Scholar 

  9. 9.

    Cramer AO, Waldorp LJ, van der Maas HL, Borsboom D. Comorbidity: a network perspective. BehavBrain Sci. 2010;33:137–50.

    Google Scholar 

  10. 10.

    Cramer AO, Borsboom D, Aggen SH, Kendler KS. The pathoplasticity of dysphoric episodes: differential impact of stressful life events on the pattern of depressive symptom inter-correlations. Psychol Med. 2012;42:957–65.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Van Borkulo C, Boschloo L, Borsboom D, Penninx BWJH, Lourens JW, Schoevers RA. Association of symptom network structure with the course of longitudinal depression. JAMA Psychiatry. 2015;72:1219–26.

  12. 12.

    Snippe E, Viechtbauer W, Geschwind N, Klippel A, de Jonge P, Wichers M. The impact of treatments for depression on the dynamic network structure of mental states: two randomized controlled trials. Sci Rep. 2017;7:46523.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Boschloo L, Van Borkulo CD, Borsboom D, Schoevers RA. A prospective study on how symptoms in a network predict the onset of depression. Psychother Psychosom. 2016;85:183–4.

    PubMed  Article  Google Scholar 

  14. 14.

    Naismith SL, Norrie LM, Mowszowski L, Hickie IB. The neurobiology of depression in later-life: clinical, neuropsychological, neuroimaging and pathophysiological features. ProgNeurobiol. 2012;98:99–143.

    Google Scholar 

  15. 15.

    Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM. Functional connectivity in the cognitive control network and the default mode network in late-life depression. J Affect Disord. 2012;139:56–65.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Alexopoulos GS, Arean P. A model for streamlining psychotherapy in the RDoC era: The example of ‘Engage’. Mol Psychiatry. 2014;19:14–19.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    van Agtmaal MJM, Houben AJHM, Pouwer F, Stehouwer CDA, Schram MT. Association of Microvascular Dysfunction With Late-Life Depression: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2017;74:729–39.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Taylor WD, Aizenstein HJ, Alexopoulos GS. The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psychiatry. 2013;18:963–74.

  19. 19.

    Alexopoulos GS, Morimoto SS. The inflammation hypothesis in geriatric depression. Int J Geriatr Psychiatry. 2011;26:1109–18.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Schaakxs R, Comijs HC, Lamers F, Beekman AT, Penninx BW. Age-related variability in the presentation of symptoms of major depressive disorder. Psychol Med. 2017;47:543–52.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Hegeman JM, Kok RM, van der Mast RC, Giltay EJ. Phenomenology of depression in older compared with younger adults: meta-analysis. Br J Psychiatry. 2012;200:275–81.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Fried EI, Nesse RM. Depression sum-scores don’t add up: Why analyzing specific depression symptoms is essential. BMC Med. 2015;13.

  23. 23.

    Börsch-Supan A, Brandt M, Hunkler C, Kneip T, Korbmacher J, Malter F, et al. Data resource profile: The survey of health, ageing and retirement in Europe (share). Int J Epidemiol. 2013;42:992–1001.

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Borsch-Supan A, Brugiavini A, Jorges H, Kapteyn A, Mackenbach J, Siegrist. et al. First results from the Survey of Health, Ageing and Retirement in Europe (2004–7). Starting the Longitudinal Dimension. Mannheim: Mannheim Research Institute for the Economics of Aging (MEA); 2008.

  25. 25.

    Börsch-Supan. A survey of health, ageing and retirement in Europe (SHARE) Wave 2. 2016 Release version: 5.0.0.

  26. 26.

    Nelson B, McGorry PD, Wichers M, Wigman JTW, Hartmann JA. Moving from static to dynamic models of the onset of mental disorder: a review. JAMA Psychiatry. 2017;74:528–34.

    PubMed  Article  Google Scholar 

  27. 27.

    Meeks TW, Vahia IV, Lavretsky H, Kulkarni G, Jeste DV. A tune in ‘a minor’ can ‘b major’: A review of epidemiology, illness course, and public health implications of subthreshold depression in older adults. J Affect Disord. 2011;129:126–42.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Kennedy GJ, Ceïde ME. Screening older adults for mental disorders. Clin Geriatr Med. 2018;34:69–79.

    PubMed  Article  Google Scholar 

  29. 29.

    Steffens DC. Late-life depression and the prodromes of dementia. JAMA Psychiatry. 2017;74:673–4.

    PubMed  Article  Google Scholar 

  30. 30.

    Pickett YR, Ghosh S, Rohs A, Kennedy GJ, Bruce ML, Lyness JM. Healthcare use among older primary care patients with minor depression. Am J Geriatr Psychiatry. 2014;22:207–10.

    PubMed  Article  Google Scholar 

  31. 31.

    Rodríguez MR, Nuevo R, Chatterji S, Ayuso-Mateos JL. Definitions and factors associated with subthreshold depressive conditions: A systematic review. BMC Psychiatry. 2012;12.

  32. 32.

    Anderson TM, Slade T, Andrews G, Sachdev PS. DSM-IV major depressive episode in the elderly: The relationship between the number and the type of depressive symptoms and impairment. J Affect Disord. 2009;117:55–62.

    PubMed  Article  Google Scholar 

  33. 33.

    Prince MJ, Beekman AT, Deeg DJ, Fuhrer R, Kivela SL, Lawlor BA, et al. Depression symptoms in late life assessed using the EURO-D scale. Effect of age, gender and marital status in 14 European centres. Br J Psychiatry. 1999;174:339–45.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Prince MJ, Reischies F, Beekman AT, Fuhrer R, Jonker C, Kivela SL, et al. Development of the EURO-D scale--a European, Union initiative to compare symptoms of depression in 14 European centres. Br J Psychiatry. 1999;174:330–8.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Griffiths-Jones HM. A computerized psychiatric diagnostic system and case nomenclature for elderly subjects: GMS and AGECAT. Psychol Med. 1986;16:89–99.

    PubMed  Article  Google Scholar 

  36. 36.

    Gurland B, Golden RR, Teresi JA, Challop J. The SHORT-CARE: An efficient instrument for the assessment of depression, dementia and disability. J Gerontol. 1984;39:166–9.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Åsberg ME, Perris CE, Schalling DE, Sedvall GE. CPRS: development and applications of a psychiatric rating scale. Acta Psychiatr Scand. 1978;57 Suppl 271:S5-69.

  38. 38.

    Radloff LS. The CES-D scale: A self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385–401.

    Article  Google Scholar 

  39. 39.

    Zung WWK. A self-rating depression scale. Arch Gen Psychiatry. 1965;12:63–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Kendler KS. The genealogy of major depression: symptoms and signs of melancholia from 1880 to 1900. Mol Psychiatry. 2017;22:1539–53.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Pagán-Rodríguez R, Pérez S. Depression and self-reported disability among older people in Western Europe. J Aging Health. 2012;24:1131–56.

    PubMed  Article  Google Scholar 

  42. 42.

    Guerra M, Ferri C, Llibre J, Prina AM, Prince M. Psychometric properties of EURO-D, a geriatric depression scale: a cross-cultural validation study. BMC Psychiatry. 2015;15:12.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Epskamp S, Borsboom D, Fried EI. Estimating psychological networks and their accuracy: a tutorial paper. Behav Res Methods. 2018;50:195–212.

    PubMed  Article  Google Scholar 

  44. 44.

    Raue PJ, Morales KH, Post EP.Bogner HR, Have T Ten, Bruce ML. The Wish to die and 5-year mortality in elderly primary care patients. Am J Geriatr Psychiatry. 2010;18:341–50.

  45. 45.

    Conwell Y, Duberstein PR, Caine ED. Risk factors for suicide in later life. Biol Psychiatry. 2002;52:193–204.

    PubMed  Article  Google Scholar 

  46. 46.

    Large M, Smith G, Sharma S, Nielssen O, Singh SP. Systematic review and meta-analysis of the clinical factors associated with the suicide of psychiatric in-patients. Acta Psychiatr Scand. 2011;124:18–19.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Bogers ICHM, Zuidersma M, Boshuisen ML, Comijs HC, Oude Voshaar RC. The influence of thoughts of death and suicidal ideation on the course of depression in older depressed patients. Int J Geriatr Psychiatry. 2017;32:882–91.

  48. 48.

    ICHM Bogers, Zuidersma M, Boshuisen ML, Comijs HC, Oude Voshaar RC. Determinants of thoughts of death or suicide in depressed older persons. Int Psychogeriatr. 2013;25:1775–82.

  49. 49.

    Pompili M, Belvederi Murri M, Patti S, Innamorati M, Lester D, Girardi P, et al. The communication of suicidal intentions: s meta-analysis. Psychol Med. 2016;46:2239–53.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Raue PJ, Sirey JA. NIH public access. Psychiatr Clin North Am. 2012;34:489–500.

    Article  Google Scholar 

  51. 51.

    Mellqvist Fässberg M, Östling S, Braam AW, Bäckman K, Copeland JRM, Fichter M, et al. Functional disability and death wishes in older Europeans: results from the EURODEP concerted action. Soc Psychiatry Psychiatr Epidemiol. 2014;49:1475–82.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Shah A, Hoxey K, Mayadunne V. Suicidal ideation in acutely medically ill elderly inpatients: prevalence, correlates and longitudinal stability. Int J Geriatr Psychiatry. 2000;15:162–9.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Sanna L, Stuart AL, Pasco JA, Kotowicz MA, Berk M, Girardi P, et al. Suicidal ideation and physical illness: does the link lie with depression? J Affect Disord. 2014;152–4:422–6.

    Article  Google Scholar 

  54. 54.

    Waern M, Rubenowitz E, Wilhelmson K. Predictors of suicide in the old elderly. Gerontology. 2003;49:328–34.

    PubMed  Article  Google Scholar 

  55. 55.

    Palgi Y. Are ongoing cumulative chronic stressors associated with optimism and pessimism in the second half of life? Anxiety Stress Coping. 2013;26:674–89.

    PubMed  Article  Google Scholar 

  56. 56.

    Nolen-Hoeksema S, Parker LE, Larson J. Ruminative coping with depressed mood following loss. J Pers Soc Psychol. 1994;67:92–104.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Aziz R, Steffens DC. What are the causes of late-life depression? Psychiatr Clin North Am. 2013;36:497–516.

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Schaakxs R, Comijs HC, van der Mast RC, Schoevers RA, Beekman ATF. Penninx BWJH. risk factors for depression: differential across age? Am J Geriatr Psychiatry. 2017;25:966–77.

    PubMed  Article  Google Scholar 

  59. 59.

    McKenzie DP, Clarke DM, Forbes AB, Sim MR. Pessimism, worthlessness, anhedonia, and thoughts of death identify DSM-IV major depression in hospitalized, medically ill patients. Psychosomatics. 2010;51:302–11.

    PubMed  Google Scholar 

  60. 60.

    Hirsch JK, Walker KL, Chang EC, Lyness JM. Illness burden and symptoms of anxiety in older adults: Optimism and pessimism as moderators. Int Psychogeriatr. 2012;24:1674–83.

    Article  Google Scholar 

  61. 61.

    Haigh EAP, Bogucki OE, Sigmon ST, Blazer DG. Depression among older adults: a 20-year update on five common myths and misconceptions. Am J Geriatr Psychiatry. 2018;26:107–22.

    PubMed  Article  Google Scholar 

  62. 62.

    Gleason OC, Pierce AM, Walker AE, Warnock JK. The two-way relationship between medical illness and late-life depression. Psychiatr Clin North Am. 2013;36:533–44.

    PubMed  Article  Google Scholar 

  63. 63.

    Abi Zeid Daou M, Boyd BD, Donahue MJ, Albert K, Taylor WD. Frontocingulate cerebral blood flow and cerebrovascular reactivity associated with antidepressant response in late-life depression. J Affect Disord. 2017;215:103–10.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Morimoto SS, Alexopoulos GS. Cognitive deficits in geriatric depression. clinical correlates and implications for current and future treatment. Psychiatr Clin North Am. 2013;36:517–31.

    PubMed  Article  Google Scholar 

  65. 65.

    Diniz BS, Reynolds CF, Sibille E, Lin CW, Tseng G, Lotrich F, et al. Enhanced molecular aging in late-life depression: the senescent-associated secretory phenotype. Am J Geriatr Psychiatry. 2017;25:64–72.

    PubMed  Article  Google Scholar 

  66. 66.

    Rutherford BR, Taylor WD, Brown PJ, Sneed JR, Roose SP. Biological aging and the future of geriatric psychiatry. J Gerontol - Ser A Biol Sci Med Sci. 2016;72:343–52.

    Article  CAS  Google Scholar 

  67. 67.

    Belvederi Murri M, Pariante C, Mondelli V, Masotti M, Atti AR, Mellacqua Z, et al. HPA axis and aging in depression: systematic review and meta-analysis. Psychoneuroendocrinology. 2014;41:46–62.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Gordon JA. On being a circuit psychiatrist. Nat Neurosci. 2016;19:1385–6.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Rizvi SJ, Pizzagalli DA, Sproule BA, Kennedy SH. Assessing anhedonia in depression: potentials and pitfalls. Neurosci Biobehav Rev. 2016;65:21–35.

    PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    van Stockert S, Haslbeck JMB, Lamers F, BWJH Penninx, Schoevers RA, Fried EI. Depression and (no) inflammation? Using network analysis to examine links between individual depressive symptoms and inflammatory markers. PsyArXiv. 2018.

    Article  Google Scholar 

  71. 71.

    Kiosses DN, Leon AC, Arean PA. Psychosocial interventions for late-life major depression: evidence-based treatments, predictors of treatment outcomes, and moderators of treatment effects. Psychiatr Clin North Am. 2011;34:377–401.

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Fried EI, Epskamp S, Nesse RM, Tuerlinckx F, Borsboom D. What are 'good' depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. J Affect Disord. 2016;189:314-20.

Download references


The SHARE data collection has been primarily funded by the European Commission through FP5 (QLK6-CT-2001–00360), FP6 (SHARE-I3: RII-CT-2006–062193, COMPARE: CIT5-CT-2005–028857, SHARELIFE: CIT4-CT-2006–028812) and FP7 (SHARE-PREP: N°211909, SHARE-LEAP: N°227822, SHARE M4: N°261982). Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the U.S. National Institute of Mental Health (P50 MH113838), National Institute on Aging (U01_AG09740–13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553–01, IAG_BSR06–11, OGHA_04–064, HHSN271201300071C) and from various national funding sources is gratefully acknowledged (see

Author information



Corresponding author

Correspondence to George S. Alexopoulos.

Ethics declarations

Conflict of interest

GSA has been on the speakers’ bureaus of Lundbeck, Otsuka, and Allergan. The other authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belvederi Murri, M., Amore, M., Respino, M. et al. The symptom network structure of depressive symptoms in late-life: Results from a European population study. Mol Psychiatry 25, 1447–1456 (2020).

Download citation

Further reading


Quick links