Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Neuroimaging of reward mechanisms in Gambling disorder: an integrative review

Abstract

Gambling disorder (GD) was reclassified as a behavioral addiction in the DSM-5 and shares clinical and behavioral features with substance use disorders (SUDs). Neuroimaging studies of GD hold promise in isolating core features of the addiction syndrome, avoiding confounding effects of drug neurotoxicity. At the same time, a neurobiologically-grounded theory of how behaviors like gambling can become addictive remains lacking, posing a significant hurdle for ongoing decisions in addiction nosology. This article integrates research on reward-related brain activity (functional MRI) and neurotransmitter function (PET) in GD, alongside the consideration of structural MRI data as to whether these signals more likely reflect pre-existing vulnerability or neuroadaptive change. Where possible, we point to qualitative similarities and differences with established markers for SUDs. Structural MRI studies indicate modest changes in regional gray matter volume and diffuse reductions in white matter integrity in GD, contrasting with clear structural deterioration in SUDs. Functional MRI studies consistently identify dysregulation in reward-related circuitry (primarily ventral striatum and medial prefrontal cortex), but evidence is mixed as to the direction of these effects. The need for further parsing of reward sub-processes is emphasized, including anticipation vs outcome, gains vs. losses, and disorder-relevant cues vs natural rewards. Neurotransmitter PET studies indicate amplified dopamine (DA) release in GD, in the context of minimal differences in baseline DA D2 receptor binding, highlighting a distinct profile from SUDs. Preliminary work has investigated further contributions of opioids, GABA and serotonin. Neuroimaging data increasingly highlight divergent profiles in GD vs. SUDs. The ability of gambling to perpetually activate DA (via maximal uncertainty) may contribute to neuroimaging similarities between GD and SUDs, whereas the supra-physiological DA effects of drugs may partly explain differences in the neuroimaging profile of the two syndromes. Coupled with consistent observations of correlations with gambling severity and related clinical variables within GD samples, the overall pattern of effects is interpreted as a likely combination of shared vulnerability markers across GD and SUDs, but with further experience-dependent neuroadaptive processes in GD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5 edition. Arlington, VA: American Psychiatric Publishing; 2013.

  2. Potenza MN. Should addictive disorders include non-substance-related conditions? Addiction. 2006;101:142–51.

    Article  PubMed  Google Scholar 

  3. Petry NM. Should the scope of addictive behaviors be broadened to include pathological gambling? Addiction. 2006;101:152–60.

    Article  PubMed  Google Scholar 

  4. Petry NM, Blanco C, Stinchfield R, Volberg R. An empirical evaluation of proposed changes for gambling diagnosis in the DSM‐5. Addiction. 2013;108:575–81.

    Article  PubMed  Google Scholar 

  5. Kraus SW, Voon V, Potenza MN. Should compulsive sexual behavior be considered an addiction? Addiction. 2016;111:2097–106.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gold MS, Badgaiyan RD, Blum K. A Shared molecular and genetic basis for food and drug addiction: overcoming hypodopaminergic trait/state by incorporating dopamine agonistic therapy in psychiatry. Psychiatr Clin North Am. 2015;38:419–62.

    Article  PubMed  Google Scholar 

  7. Grant JE, Chamberlain SR. Expanding the definition of addiction: DSM-5 vs. ICD-11. CNS Spectr. 2016;21:300–3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aarseth E, Bean AM, Boonen H, Colder Carras M, Coulson M, Das D, et al. Scholars’ open debate paper on the World Health Organization ICD-11 Gaming Disorder proposal. J Behav Addict. 2017;6:267–70.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Insel TR. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am J Psychiatry. 2014;171:395–7.

    Article  PubMed  Google Scholar 

  10. Dillon DG, Rosso IM, Pechtel P, Killgore WD, Rauch SL, Pizzagalli DA. Peril and pleasure: an RDoC-inspired examination of threat responses and reward processing in anxiety and depression. Depress Anxiety. 2014;31:233–49.

    Article  PubMed  Google Scholar 

  11. Barch DM, Pagliaccio D, Luking K. Mechanisms underlying motivational deficits in psychopathology: similarities and differences in depression and schizophrenia. Curr Top Behav Neurosci. 2016;27:411–49.

    Article  PubMed  Google Scholar 

  12. Leeman RF, Potenza MN. Similarities and differences between pathological gambling and substance use disorders: a focus on impulsivity and compulsivity. Psychopharmacol (Berl). 2012;219:469–90.

    Article  CAS  Google Scholar 

  13. Koob GF. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology. 2009;56:18–31.

    Article  CAS  PubMed  Google Scholar 

  14. Verdejo-Garcia A, Lawrence AJ, Clark L. Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev. 2008;32:777–810.

    Article  PubMed  Google Scholar 

  15. Wenger E, Brozzoli C, Lindenberger U, Lovden M. Expansion and renormalization of human brain structure during skill acquisition. Trends Cogn Sci. 2017;21:930–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9.

    Article  CAS  PubMed  Google Scholar 

  17. Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell. 2015;162:712–25.

    Article  CAS  PubMed  Google Scholar 

  18. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    Article  CAS  PubMed  Google Scholar 

  19. Redish AD. Addiction as a computational process gone awry. Sci. 2004;306:1944–7.

    Article  CAS  Google Scholar 

  20. Schultz W. Updating dopamine reward signals. Curr Opin Neurobiol. 2013;23:229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bunzeck N, Guitart-Masip M, Dolan RJ, Duzel E. Pharmacological dissociation of novelty responses in the human brain. Cereb Cortex. 2014;24:1351–60.

    Article  PubMed  Google Scholar 

  22. Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Sci. 2003;299:1898–902.

    Article  CAS  Google Scholar 

  23. Tremblay AM, Desmond RC, Poulos CX, Zack M. Haloperidol modifies instrumental aspects of slot machine gambling in pathological gamblers and healthy controls. Addict Biol. 2011;16:467–84.

    Article  CAS  PubMed  Google Scholar 

  24. Robinson TE, Berridge KC. Incentive-sensitization and addiction. Addiction. 2001;96:103–14.

    Article  CAS  PubMed  Google Scholar 

  25. Knutson B, Adams CM, Fong GW, Hommer D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci. 2001;21:RC159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bechara A, Tranel D, Damasio H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000;123:2189–202.

    Article  PubMed  Google Scholar 

  27. Bickel WK, Marsch LA. Toward a behavioral economic understanding of drug dependence: delay discounting processes. Addiction. 2001;96:73–86.

    Article  CAS  PubMed  Google Scholar 

  28. van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Why gamblers fail to win: a review of cognitive and neuroimaging findings in pathological gambling. Neurosci Biobehav Rev. 2009;34:87–107.

    Article  PubMed  Google Scholar 

  29. Grant JE, Odlaug BL, Chamberlain SR. Neural and psychological underpinnings of gambling disorder: A review. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:188–93.

    Article  PubMed  Google Scholar 

  30. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kelley BJ, Duker AP, Chiu P. Dopamine agonists and pathologic behaviors. Parkinson’s Dis. 2012;2012:603631.

    Google Scholar 

  32. Knezevic B, Ledgerwood DM. Gambling severity, impulsivity, and psychopathology: comparison of treatment- and community-recruited pathological gamblers. Am J Addict. 2012;21:508–15.

    Article  PubMed  Google Scholar 

  33. Kober H, Lacadie CM, Wexler BE, Malison RT, Sinha R, Potenza MN. Brain Activity during cocaine craving and gambling urges: an fMRI Study. Neuropsychopharmacology. 2016;41:628–37.

    Article  CAS  PubMed  Google Scholar 

  34. Goudriaan AE, Oosterlaan J, de Beurs E, van den Brink W. Decision making in pathological gambling: a comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Brain Res Cogn Brain Res. 2005;23:137–51.

    Article  PubMed  Google Scholar 

  35. Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G. Disruption of reward processing in addiction: an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiatry. 2017;74:387–98.

    Article  PubMed  Google Scholar 

  36. Blaszczynski A, Nower L. A pathways model of problem and pathological gambling. Addiction. 2002;97:487–99.

    Article  PubMed  Google Scholar 

  37. Clark L, Stokes PR, Wu K, Michalczuk R, Benecke A, Watson BJ, et al. Striatal dopamine D(2)/D(3) receptor binding in pathological gambling is correlated with mood-related impulsivity. Neuroimage. 2012;63:40–6.

    Article  CAS  PubMed  Google Scholar 

  38. Boileau I, Payer D, Chugani B, Lobo D, Behzadi A, Rusjan PM, et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl- hexahydro-naphtho-oxazin and [11C]raclopride. Addiction. 2013;108:953–63.

    Article  PubMed  Google Scholar 

  39. Boileau I, Payer D, Chugani B, Lobo DS, Houle S, Wilson AA, et al. In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Mol Psychiatry. 2014;19:1305–13.

    Article  CAS  PubMed  Google Scholar 

  40. Fauth-Buhler M, Zois E, Vollstadt-Klein S, Lemenager T, Beutel M, Mann K. Insula and striatum activity in effort-related monetary reward processing in gambling disorder: the role of depressive symptomatology. Neuroimage Clin. 2014;6:243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  41. van Holst RJ, de Ruiter MB, van den Brink W, Veltman DJ, Goudriaan AE. A voxel-based morphometry study comparing problem gamblers, alcohol abusers, and healthy controls. Drug Alcohol Depend. 2012;124:142–8.

    Article  PubMed  Google Scholar 

  42. Joutsa J, Saunavaara J, Parkkola R, Niemela S, Kaasinen V. Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Res. 2011;194:340–6.

    Article  PubMed  Google Scholar 

  43. Fuentes D, Rzezak P, Pereira FR, Malloy-Diniz LF, Santos LC, Duran FL, et al. Mapping brain volumetric abnormalities in never-treated pathological gamblers. Psychiatry Res. 2015;232:208–13.

    Article  PubMed  Google Scholar 

  44. Yip SW, Worhunsky PD, Xu J, Morie KP, Constable RT, Malison RT, et al. Gray-matter relationships to diagnostic and transdiagnostic features of drug and behavioral addictions. Addict Biol. 2017;23:394–402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rosenbloom M, Sullivan EV, Pfefferbaum A. Using magnetic resonance imaging and diffusion tensor imaging to assess brain damage in alcoholics. Alcohol Res Health. 2003;27:146–52.

    PubMed  PubMed Central  Google Scholar 

  46. Zois E, Kiefer F, Lemenager T, Vollstadt-Klein S, Mann K, Fauth-Buhler M. Frontal cortex gray matter volume alterations in pathological gambling occur independently from substance use disorder. Addict Biol. 2017;22:864–72.

    Article  PubMed  Google Scholar 

  47. Grant JE, Odlaug BL, Chamberlain SR. Reduced cortical thickness in gambling disorder: a morphometric MRI study. Eur Arch Psychiatry Clin Neurosci. 2015;265:655–61.

    Article  PubMed  Google Scholar 

  48. Rahman AS, Xu J, Potenza MN. Hippocampal and amygdalar volumetric differences in pathological gambling: a preliminary study of the associations with the behavioral inhibition system. Neuropsychopharmacology. 2014;39:738–45.

    Article  PubMed  Google Scholar 

  49. Koehler S, Hasselmann E, Wustenberg T, Heinz A, Romanczuk-Seiferth N. Higher volume of ventral striatum and right prefrontal cortex in pathological gambling. Brain Struct Funct. 2015;220:469–77.

    Article  PubMed  Google Scholar 

  50. Tanabe J, Tregellas JR, Dalwani M, Thompson L, Owens E, Crowley T, et al. Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. Biol Psychiatry. 2009;65:160–4.

    Article  PubMed  Google Scholar 

  51. Cho SS, Pellecchia G, Aminian K, Ray N, Segura B, Obeso I, et al. Morphometric correlation of impulsivity in medial prefrontal cortex. Brain Topogr. 2013;26:479–87.

    Article  PubMed  Google Scholar 

  52. Takeuchi H, Tsurumi K, Murao T, Takemura A, Kawada R, Urayama SI, et al. Common and differential brain abnormalities in gambling disorder subtypes based on risk attitude. Addict Behav. 2017;69:48–54.

    Article  PubMed  Google Scholar 

  53. Chamberlain SR, Derbyshire K, Daws RE, Odlaug BL, Leppink EW, Grant JE. White matter tract integrity in treatment-resistant gambling disorder. Br J Psychiatry. 2016;208:579–84.

    Article  PubMed  Google Scholar 

  54. van Timmeren. T, Jansen JM, Caan MW, Goudriaan AE, van Holst RJ. White matter integrity between left basal ganglia and left prefrontal cortex is compromised in gambling disorder. Addict Biol. 2016;22:1590–600.

    Article  PubMed  CAS  Google Scholar 

  55. Mohammadi B, Hammer A, Miedl SF, Wiswede D, Marco-Pallares J, Herrmann M, et al. Intertemporal choice behavior is constrained by brain structure in healthy participants and pathological gamblers. Brain Struct Funct. 2016;221:3157–70.

    Article  CAS  PubMed  Google Scholar 

  56. Yip SW, Morie KP, Xu J, Constable RT, Malison RT, Carroll KM, et al. Shared microstructural features of behavioral and substance addictions revealed in areas of crossing fibers. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:188–95.

    PubMed  PubMed Central  Google Scholar 

  57. Ersche KD, Williams GB, Robbins TW, Bullmore ET. Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Curr Opin Neurobiol. 2013;23:615–24.

    Article  CAS  PubMed  Google Scholar 

  58. Yang X, Tian F, Zhang H, Zeng J, Chen T, Wang S, et al. Cortical and subcortical gray matter shrinkage in alcohol-use disorders: a voxel-based meta-analysis. Neurosci Biobehav Rev. 2016;66:92–103.

    Article  CAS  PubMed  Google Scholar 

  59. Wollman SC, Alhassoon OM, Hall MG, Stern MJ, Connors EJ, Kimmel CL, et al. Gray matter abnormalities in opioid-dependent patients: A neuroimaging meta-analysis. Am J Drug Alcohol Abus. 2017;43:505–17.

    Article  Google Scholar 

  60. Reuter J, Raedler T, Rose M, Hand I, Glascher J, Buchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci. 2005;8:147–8.

    Article  CAS  PubMed  Google Scholar 

  61. Balodis IM, Kober H, Worhunsky PD, Stevens MC, Pearlson GD, Potenza MN. Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry. 2012;71:749–57.

    Article  PubMed  PubMed Central  Google Scholar 

  62. de Ruiter MB, Veltman DJ, Goudriaan AE, Oosterlaan J, Sjoerds Z, van den Brink W. Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology. 2009;34:1027–38.

    Article  PubMed  Google Scholar 

  63. Choi JS, Shin YC, Jung WH, Jang JH, Kang DH, Choi CH, et al. Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder. PLoS ONE. 2012;7:e45938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van Holst RJ, Veltman DJ, Buchel C, van den Brink W, Goudriaan AE. Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biol Psychiatry. 2012;71:741–8.

    Article  PubMed  Google Scholar 

  65. Miedl SF, Peters J, Buchel C. Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry. 2012;69:177–86.

    Article  PubMed  Google Scholar 

  66. Sescousse G, Janssen LK, Hashemi MM, Timmer MH, Geurts DE, Ter Huurne NP, et al. Amplified striatal responses to near-miss outcomes in pathological Gamblers. Neuropsychopharmacology. 2016;41:2614–23.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gelskov SV, Madsen KH, Ramsoy TZ, Siebner HR. Aberrant neural signatures of decision- making: pathological gamblers display cortico-striatal hypersensitivity to extreme gambles. Neuroimage. 2016;128:342–52.

    Article  PubMed  Google Scholar 

  68. Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA. 2016;113:7900–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Worhunsky PD, Malison RT, Rogers RD, Potenza MN. Altered neural correlates of reward and loss processing during simulated slot-machine fMRI in pathological gambling and cocaine dependence. Drug Alcohol Depend. 2014;145:77–86.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Leyton M, Vezina P. Striatal ups and downs: their roles in vulnerability to addictions in humans. Neurosci Biobehav Rev. 2013;37:1999–2014.

    Article  PubMed  Google Scholar 

  71. Tsurumi K, Kawada R, Yokoyama N, Sugihara G, Sawamoto N, Aso T, et al. Insular activation during reward anticipation reflects duration of illness in abstinent pathological gamblers. Front Psychol. 2014;5:1013.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sescousse G, Barbalat G, Domenech P, Dreher JC. Imbalance in the sensitivity to different types of rewards in pathological gambling. Brain. 2013;136:2527–38.

    Article  PubMed  Google Scholar 

  73. Romanczuk-Seiferth N, Koehler S, Dreesen C, Wustenberg T, Heinz A. Pathological gambling and alcohol dependence: neural disturbances in reward and loss avoidance processing. Addict Biol. 2015;20:557–69.

    Article  PubMed  Google Scholar 

  74. Clark L, Lawrence AJ, Astley-Jones F, Gray N. Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron. 2009;61:481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chase HW, Clark L. Gambling severity predicts midbrain response to near-miss outcomes. J Neurosci. 2010;30:6180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dymond S, Lawrence NS, Dunkley BT, Yuen KS, Hinton EC, Dixon MR, et al. Almost winning: induced MEG theta power in insula and orbitofrontal cortex increases during gambling near- misses and is associated with BOLD signal and gambling severity. Neuroimage. 2014;91:210–9.

    Article  PubMed  Google Scholar 

  77. Asensio S, Romero MJ, Palau C, Sanchez A, Senabre I, Morales JL, et al. Altered neural response of the appetitive emotional system in cocaine addiction: an fMRI Study. Addict Biol. 2010;15:504–16.

    Article  PubMed  Google Scholar 

  78. Jastreboff AM, Sinha R, Lacadie CM, Balodis IM, Sherwin R, Potenza MN. Blunted striatal responses to favorite-food cues in smokers. Drug Alcohol Depend. 2015;146:103–6.

    Article  PubMed  Google Scholar 

  79. Barbas H, Zikopoulos B, Timbie C. Sensory pathways and emotional context for action in primate prefrontal cortex. Biol Psychiatry. 2011;69:1133–9.

    Article  PubMed  Google Scholar 

  80. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18:121–33.

    Article  PubMed  Google Scholar 

  81. Tang DW, Fellows LK, Small DM, Dagher A. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol Behav. 2012;106:317–24.

    Article  CAS  PubMed  Google Scholar 

  82. Sjoerds Z, van den Brink W, Beekman AT, Penninx BW, Veltman DJ. Cue reactivity is associated with duration and severity of alcohol dependence: an FMRI study. PLoS ONE. 2014;9:e84560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Goudriaan AE, de Ruiter MB, van den Brink W, Oosterlaan J, Veltman DJ. Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study. Addict Biol. 2010;15:491–503.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Limbrick-Oldfield EH, Mick I, Cocks R, McGonigle J, Sharman S, Goldstone AP, et al. Neural substrates of cue reactivity and craving in gambling disorder. Transl Psychiatry. 2017;7:e992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lole L, Gonsalvez CJ, Barry RJ. Reward and punishment hyposensitivity in problem gamblers: A study of event-related potentials using a principal components analysis. Clin Neurophysiol. 2015;126:1295–309.

    Article  PubMed  Google Scholar 

  86. Seymour B, O’Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan RJ, et al. Temporal difference models describe higher-order learning in humans. Nature. 2004;429:664–7.

    Article  CAS  PubMed  Google Scholar 

  87. Clark L, Averbeck B, Payer D, Sescousse G, Winstanley CA, Xue G. Pathological choice: the neuroscience of gambling and gambling addiction. J Neurosci. 2013;33:17617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reynolds B. A review of delay-discounting research with humans: relations to drug use and gambling. Behav Pharmacol. 2006;17:651–67.

    Article  PubMed  Google Scholar 

  89. Madden GJ, Petry NM, Johnson PS. Pathological gamblers discount probabilistic rewards less steeply than matched controls. Exp Clin Psychopharmacol. 2009;17:283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Petry NM. Discounting of probabilistic rewards is associated with gambling abstinence in treatment-seeking pathological gamblers. J Abnorm Psychol. 2012;121:151–9.

    Article  PubMed  Google Scholar 

  91. Miedl SF, Buchel C, Peters J. Cue-induced craving increases impulsivity via changes in striatal value signals in problem gamblers. J Neurosci. 2014;34:4750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wiehler A, Petzschner FH, Stephan KE, Peters J. Episodic tags enhance striatal valuation signals during temporal discounting in pathological gamblers. eNeuro. 2017;4:EENEURO.0159-17.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bechara A. Risky business: emotion, decision-making, and addiction. J Gambl Stud. 2003;19:23–51.

    Article  PubMed  Google Scholar 

  94. Power Y, Goodyear B, Crockford D. Neural correlates of pathological gamblers preference for immediate rewards during the iowa gambling task: an fMRI study. J Gambl Stud. 2012;28:623–36.

    Article  PubMed  Google Scholar 

  95. Tanabe J, Thompson L, Claus E, Dalwani M, Hutchison K, Banich MT. Prefrontal cortex activity is reduced in gambling and nongambling substance users during decision-making. Hum Brain Mapp. 2007;28:1276–86.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Buelow MT, Blaine AL. The assessment of risky decision making: a factor analysis of performance on the Iowa Gambling Task, Balloon Analogue Risk Task, and Columbia Card Task. Psychol Assess. 2015;27:777–85.

    Article  PubMed  Google Scholar 

  97. Fujimoto A, Tsurumi K, Kawada R, Murao T, Takeuchi H, Murai T, et al. Deficit of state- dependent risk attitude modulation in gambling disorder. Transl Psychiatry. 2017;7:e1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McLaren DG, Ries ML, Xu G, Johnson SC. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage. 2012;61:1277–86.

    Article  PubMed  Google Scholar 

  99. Jentsch JD, Taylor JR. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacol (Berl). 1999;146:373–90.

    Article  CAS  Google Scholar 

  100. Peters J, Miedl SF, Buchel C. Elevated functional connectivity in a striatal-amygdala circuit in pathological gamblers. PLoS ONE. 2013;8:e74353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. van Holst RJ, van Holstein M, van den Brink W, Veltman DJ, Goudriaan AE. Response inhibition during cue reactivity in problem gamblers: an fMRI study. PLoS One. 2012;7:e30909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. van Holst RJ, Chase HW, Clark L. Striatal connectivity changes following gambling wins and near-misses: associations with gambling severity. Neuroimage Clin. 2014;5:232–9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hommer DW, Bjork JM, Gilman JM. Imaging brain response to reward in addictive disorders. Ann N Y Acad Sci. 2011;1216:50–61.

    Article  CAS  PubMed  Google Scholar 

  104. Esposito F, Goebel R. Extracting functional networks with spatial independent component analysis: the role of dimensionality, reliability and aggregation scheme. Curr Opin Neurol. 2011;24:378–85.

    Article  PubMed  Google Scholar 

  105. Koehler S, Ovadia-Caro S, van der Meer E, Villringer A, Heinz A, Romanczuk-Seiferth N, et al. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling. PLoS ONE. 2013;8:e84565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Contreras-Rodriguez O, Albein-Urios N, Vilar-Lopez R, Perales JC, Martinez-Gonzalez JM, Fernandez-Serrano MJ, et al. Increased corticolimbic connectivity in cocaine dependence versus pathological gambling is associated with drug severity and emotion-related impulsivity. Addict Biol. 2016;21:709–18.

    Article  CAS  PubMed  Google Scholar 

  107. Jung MH, Kim JH, Shin YC, Jung WH, Jang JH, Choi JS, et al. Decreased connectivity of the default mode network in pathological gambling: a resting state functional MRI study. Neurosci Lett. 2014;583:120–5.

    Article  CAS  PubMed  Google Scholar 

  108. Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PR. The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci. 2015;16:305–12.

    Article  CAS  PubMed  Google Scholar 

  109. Grant JE, Chamberlain SR, Odlaug BL, Potenza MN, Kim SW. Memantine shows promise in reducing gambling severity and cognitive inflexibility in pathological gambling: a pilot study. Psychopharmacology. 2010;212:603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Grant JE, Kim SW, Odlaug BL. N-acetyl cysteine, a glutamate-modulating agent, in the treatment of pathological gambling: a pilot study. Biol Psychiatry. 2007;62:652–7.

    Article  CAS  PubMed  Google Scholar 

  111. Zack M, Poulos CX. Effects of the atypical stimulant modafinil on a brief gambling episode in pathological gamblers with high vs. low impulsivity. J Psychopharmacol. 2009;23:660–71.

    Article  CAS  PubMed  Google Scholar 

  112. Volkow ND, Fowler JS, Wang GJ, Swanson JM. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry. 2004;9:557–69.

    Article  CAS  PubMed  Google Scholar 

  113. Joutsa J, Johansson J, Niemela S, Ollikainen A, Hirvonen MM, Piepponen P, et al. Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage. 2012;60:1992–9.

    Article  CAS  PubMed  Google Scholar 

  114. Linnet J, Moller A, Peterson E, Gjedde A, Doudet D. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction. 2011;106:383–90.

    Article  PubMed  Google Scholar 

  115. Gould RW, Duke AN, Nader MA. PET studies in nonhuman primate models of cocaine abuse: translational research related to vulnerability and neuroadaptations. Neuropharmacology. 2014;84:138–51.

    Article  CAS  PubMed  Google Scholar 

  116. Martinez D, Saccone PA, Liu F, Slifstein M, Orlowska D, Grassetti A, et al. Deficits in dopamine D(2) receptors and presynaptic dopamine in heroin dependence: commonalities and differences with other types of addiction. Biol Psychiatry. 2012;71:192–8.

    Article  CAS  PubMed  Google Scholar 

  117. Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol. 2007;64:1575–9.

    Article  PubMed  Google Scholar 

  118. Casey KF, Benkelfat C, Cherkasova MV, Baker GB, Dagher A, Leyton M. Reduced dopamine response to amphetamine in subjects at ultra-high risk for addiction. Biol Psychiatry. 2014;76:23–30.

    Article  CAS  PubMed  Google Scholar 

  119. Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Sci. 2007;315:1267–70.

    Article  CAS  Google Scholar 

  120. Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic network differences in human impulsivity. Sci. 2010;329:532.

    Article  CAS  Google Scholar 

  121. Reeves SJ, Polling C, Stokes PR, Lappin JM, Shotbolt PP, Mehta MA, et al. Limbic striatal dopamine D2/3 receptor availability is associated with non-planning impulsivity in healthy adults after exclusion of potential dissimulators. Psychiatry Res. 2012;202:60–4.

    Article  CAS  PubMed  Google Scholar 

  122. Oberlin BG, Albrecht DS, Herring CM, Walters JW, Hile KL, Kareken DA, et al. Monetary discounting and ventral striatal dopamine receptor availability in nontreatment-seeking alcoholics and social drinkers. Psychopharmacol (Berl). 2015;232:2207–16.

    Article  CAS  Google Scholar 

  123. Ballard ME, Mandelkern MA, Monterosso JR, Hsu E, Robertson CL, Ishibashi K, et al. Low dopamine D2/D3 receptor availability is associated with steep discounting of delayed rewards in methamphetamine dependence. Int J Neuropsychopharmacol. 2015;18:pyu119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lee B, London ED, Poldrack RA, Farahi J, Nacca A, Monterosso JR, et al. Striatal dopamine d2/d3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity. J Neurosci. 2009;29:14734–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Martinez D, Carpenter KM, Liu F, Slifstein M, Broft A, Friedman AC, et al. Imaging dopamine transmission in cocaine dependence: link between neurochemistry and response to treatment. Am J Psychiatry. 2011;168:634–41.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Peterson E, Moller A, Doudet DJ, Bailey CJ, Hansen KV, Rodell A, et al. Pathological gambling: relation of skin conductance response to dopaminergic neurotransmission and sensation-seeking. Eur Neuropsychopharmacol. 2010;20:766–75.

    Article  CAS  PubMed  Google Scholar 

  127. Barrus MM, Winstanley CA. Dopamine D3 receptors modulate the ability of win-paired cues to increase risky choice in a rat gambling task. J Neurosci. 2016;36:785–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Payer D, Balasubramaniam G, Boileau I. What is the role of the D3 receptor in addiction? A mini review of PET studies with [(11)C]-(+)-PHNO. Prog Neuropsychopharmacol Biol Psychiatry. 2014;52:4–8.

    Article  CAS  PubMed  Google Scholar 

  129. van Holst RJ, Sescousse G, Janssen LK, Janssen M, Berry AS, Jagust WJ, et al. Increased Striatal Dopamine Synthesis Capacity in Gambling Addiction. Biol Psychiatry. 2018;83:1036–43.

  130. Majuri J, Joutsa J, Johansson J, Voon V, Alakurtti K, Parkkola R, et al. Dopamine and opioid neurotransmission in behavioral addictions: a comparative PET study in pathological gambling and binge eating. Neuropsychopharmacology. 2017;42:1169–77.

    Article  CAS  PubMed  Google Scholar 

  131. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature. 1997;386:830–3.

    Article  CAS  PubMed  Google Scholar 

  132. Martinez D, Narendran R, Foltin RW, Slifstein M, Hwang DR, Broft A, et al. Amphetamine- induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry. 2007;164:622–9.

    Article  PubMed  Google Scholar 

  133. Martinez D, Gil R, Slifstein M, Hwang DR, Huang Y, Perez A, et al. Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry. 2005;58:779–86.

    Article  CAS  PubMed  Google Scholar 

  134. Joutsa J, Voon V, Johansson J, Niemela S, Bergman J, Kaasinen V. Dopaminergic function and intertemporal choice. Transl Psychiatry. 2015;5:e491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Trifilieff P, Martinez D. Imaging addiction: D2 receptors and dopamine signaling in the striatum as biomarkers for impulsivity. Neuropharmacology. 2014;76:498–509.

    Article  CAS  PubMed  Google Scholar 

  136. Linnet J, Peterson E, Doudet DJ, Gjedde A, Moller A. Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatr Scand. 2010;122:326–33.

    Article  PubMed  Google Scholar 

  137. Linnet J, Mouridsen K, Peterson E, Moller A, Doudet DJ, Gjedde A. Striatal dopamine release codes uncertainty in pathological gambling. Psychiatry Res. 2012;204:55–60.

    Article  CAS  PubMed  Google Scholar 

  138. Linnet J, Moller A, Peterson E, Gjedde A, Doudet D. Inverse association between dopaminergic neurotransmission and Iowa Gambling Task performance in pathological gamblers and healthy controls. Scand J Psychol. 2011;52:28–34.

    Article  PubMed  Google Scholar 

  139. Mick I, Ramos AC, Myers J, Stokes PR, Chandrasekera S, Erritzoe D, et al. Evidence for GABA- A receptor dysregulation in gambling disorder: correlation with impulsivity. Addict Biol. 2017;22:1601–9.

    Article  CAS  PubMed  Google Scholar 

  140. Lingford-Hughes A, Reid AG, Myers J, Feeney A, Hammers A, Taylor LG, et al. A [11 C]Ro15 4513 PET study suggests that alcohol dependence in man is associated with reduced alpha5 benzodiazepine receptors in limbic regions. J Psychopharmacol. 2012;26:273–81.

    Article  CAS  PubMed  Google Scholar 

  141. Baldo BA, Kelley AE. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology (Berl). 2007;191:439–59.

    Article  CAS  Google Scholar 

  142. Langleben DD, Busch EL, O’Brien CP, Elman I. Depot naltrexone decreases rewarding properties of sugar in patients with opioid dependence. Psychopharmacology (Berl). 2012;220:559–64.

    Article  CAS  Google Scholar 

  143. Setiawan E, Pihl RO, Cox SM, Gianoulakis C, Palmour RM, Benkelfat C, et al. The effect of naltrexone on alcohol’s stimulant properties and self-administration behavior in social drinkers: influence of gender and genotype. Alcohol Clin Exp Res. 2011;35:1134–41.

    Article  CAS  PubMed  Google Scholar 

  144. Knott VJ, Fisher DJ. Naltrexone alteration of the nicotine-induced EEG and mood activation response in tobacco-deprived cigarette smokers. Exp Clin Psychopharmacol. 2007;15:368–81.

    Article  CAS  PubMed  Google Scholar 

  145. Zubieta JK, Gorelick DA, Stauffer R, Ravert HT, Dannals RF, Frost JJ. Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nat Med. 1996;2:1225–9.

    Article  CAS  PubMed  Google Scholar 

  146. Gorelick DA, Kim YK, Bencherif B, Boyd SJ, Nelson R, Copersino M, et al. Imaging brain mu- opioid receptors in abstinent cocaine users: time course and relation to cocaine craving. Biol Psychiatry. 2005;57:1573–82.

    Article  CAS  PubMed  Google Scholar 

  147. Gorelick DA, Kim YK, Bencherif B, Boyd SJ, Nelson R, Copersino ML, et al. Brain mu-opioid receptor binding: relationship to relapse to cocaine use after monitored abstinence. Psychopharmacol (Berl). 2008;200:475–86.

    Article  CAS  Google Scholar 

  148. Heinz A, Reimold M, Wrase J, Hermann D, Croissant B, Mundle G, et al. Correlation of stable elevations in striatal mu-opioid receptor availability in detoxified alcoholic patients with alcohol craving: a positron emission tomography study using carbon 11-labeled carfentanil. Arch Gen Psychiatry. 2005;62:57–64.

    Article  PubMed  Google Scholar 

  149. Hermann D, Hirth N, Reimold M, Batra A, Smolka MN, Hoffmann S, et al. Low mu-opioid receptor status in alcohol dependence identified by combined positron emission tomography and post-mortem brain analysis. Neuropsychopharmacology. 2016;42:606–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Grant JE, Kim SW, Hartman BK. A double-blind, placebo-controlled study of the opiate antagonist naltrexone in the treatment of pathological gambling urges. J Clin Psychiatry. 2008;69:783–9.

    Article  CAS  PubMed  Google Scholar 

  151. Grant JE, Potenza MN, Hollander E, Cunningham-Williams R, Nurminen T, Smits G, et al. Multicenter investigation of the opioid antagonist nalmefene in the treatment of pathological gambling. Am J Psychiatry. 2006;163:303–12.

    Article  PubMed  Google Scholar 

  152. Koob GF. Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory. Pharmacopsychiatry. 2009;42:S32–41.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mick I, Myers J, Ramos AC, Stokes PR, Erritzoe D, Colasanti A, et al. Blunted endogenous opioid release following an oral amphetamine challenge in pathological gamblers. Neuropsychopharmacology. 2016;41:1742–50.

    Article  CAS  PubMed  Google Scholar 

  154. Zellner MR, Watt DF, Solms M, Panksepp J. Affective neuroscientific and neuropsychoanalytic approaches to two intractable psychiatric problems: why depression feels so bad and what addicts really want. Neurosci Biobehav Rev. 2011;35:2000–8.

    Article  PubMed  Google Scholar 

  155. Nikolaus S, Antke C, Beu M, Muller HW. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders-results from in vivo imaging studies. Rev Neurosci. 2010;21:119–39.

    Article  CAS  PubMed  Google Scholar 

  156. Watson JM, Dawson LA. Characterization of the potent 5-HT(1 A/B) receptor antagonist and serotonin reuptake inhibitor SB-649915: preclinical evidence for hastened onset of antidepressant/anxiolytic efficacy. CNS Drug Rev. 2007;13:206–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R. Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology. 1999;21:52S–60S.

    Article  CAS  PubMed  Google Scholar 

  158. de Almeida RM, Ferrari PF, Parmigiani S, Miczek KA. Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol. 2005;526:51–64.

    Article  PubMed  CAS  Google Scholar 

  159. Potenza MN, Walderhaug E, Henry S, Gallezot JD, Planeta-Wilson B, Ropchan J, et al. Serotonin 1B receptor imaging in pathological gambling. World J Biol Psychiatry. 2013;14:139–45.

    Article  PubMed  Google Scholar 

  160. Matuskey D, Bhagwagar Z, Planeta B, Pittman B, Gallezot JD, Chen J, et al. Reductions in brain 5-HT1B receptor availability in primarily cocaine-dependent humans. Biol Psychiatry. 2014;76:816–22.

    Article  CAS  PubMed  Google Scholar 

  161. Majuri J, Joutsa J, Johansson J, Voon V, Parkkola R, Alho H, et al. Serotonin transporter density in binge eating disorder and pathological gambling: A PET study with [(11)C]MADAM. Eur Neuropsychopharmacol. 2017;27:1281–8.

    Article  CAS  PubMed  Google Scholar 

  162. Martinez D, Slifstein M, Gil R, Hwang DR, Huang Y, Perez A, et al. Positron emission tomography imaging of the serotonin transporter and 5-HT(1 A) receptor in alcohol dependence. Biol Psychiatry. 2009;65:175–80.

    Article  CAS  PubMed  Google Scholar 

  163. Roberts CA, Jones A, Montgomery C. Meta-analysis of molecular imaging of serotonin transporters in ecstasy/polydrug users. Neurosci Biobehav Rev. 2016;63:158–67.

    Article  CAS  PubMed  Google Scholar 

  164. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27.

    Article  CAS  PubMed  Google Scholar 

  165. Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology. 2009;56:3–8.

    Article  CAS  PubMed  Google Scholar 

  166. Clark L. Disordered gambling: the evolving concept of behavioral addiction. Ann N Y Acad Sci. 2014;1327:46–61.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Yucel M, Carter A, Harrigan K, van Holst RJ, Livingstone C. Hooked on gambling: a problem of human or machine design? Lancet Psychiatry. 2018;5:20–1.

    Article  PubMed  Google Scholar 

  168. Zack M, Featherstone RE, Mathewson S, Fletcher PJ. Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. Front Behav Neurosci. 2014;8:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Zeeb FD, Li Z, Fisher DC, Zack MH, Fletcher PJ. Uncertainty exposure causes behavioural sensitization and increases risky decision-making in male rats: toward modelling gambling disorder. J Psychiatry Neurosci. 2017;42:404–13.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Singer BF, Scott-Railton J, Vezina P. Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behav Brain Res. 2012;226:340–4.

    Article  CAS  PubMed  Google Scholar 

  171. Koob GF, Buck CL, Cohen A, Edwards S, Park PE, Schlosburg JE, et al. Addiction as a stress surfeit disorder. Neuropharmacology. 2014;76:370–82.

    Article  CAS  PubMed  Google Scholar 

  172. Grant JE, Chamberlain SR, Schreiber LR, Odlaug BL. Gender-related clinical and neurocognitive differences in individuals seeking treatment for pathological gambling. J Psychiatr Res. 2012;46:1206–11.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Subramaniam M, Abdin E, Vaingankar JA, Wong KE, Chong SA. Comorbid physical and mental illnesses among pathological gamblers: results from a population based study in Singapore. Psychiatry Res. 2015;227:198–205.

    Article  PubMed  Google Scholar 

  174. Maclaren VV, Fugelsang JA, Harrigan KA, Dixon MJ. The personality of pathological gamblers: a meta-analysis. Clin Psychol Rev. 2011;31:1057–67.

    Article  PubMed  Google Scholar 

  175. Lobo DS, Souza RP, Tong RP, Casey DM, Hodgins DC, Smith GJ, et al. Association of functional variants in the dopamine D2-like receptors with risk for gambling behaviour in healthy Caucasian subjects. Biol Psychol. 2010;85:33–7.

    Article  PubMed  Google Scholar 

  176. Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37:1702–12.

    Article  PubMed  Google Scholar 

  177. Yip SW, Lacadie C, Xu J, Worhunsky PD, Fulbright RK, Constable RT, et al. Reduced genual corpus callosal white matter integrity in pathological gambling and its relationship to alcohol abuse or dependence. World J Biol Psychiatry. 2013;14:129–38.

    Article  PubMed  Google Scholar 

  178. Potenza MN, Steinberg MA, Skudlarski P, Fulbright RK, Lacadie CM, Wilber MK, et al. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2003;60:828–36.

    Article  PubMed  Google Scholar 

  179. Crockford DN, Goodyear B, Edwards J, Quickfall J, el-Guebaly N. Cue-induced brain activity in pathological gamblers. Biol Psychiatry. 2005;58:787–95.

    Article  PubMed  Google Scholar 

  180. de Greck M, Enzi B, Prosch U, Gantman A, Tempelmann C, Northoff G. Decreased neuronal activity in reward circuitry of pathological gamblers during processing of personal relevant stimuli. Hum Brain Mapp. 2010;31:1802–12.

    PubMed  PubMed Central  Google Scholar 

  181. Miedl SF, Fehr T, Meyer G, Herrmann M. Neurobiological correlates of problem gambling in a quasi-realistic blackjack scenario as revealed by fMRI. Psychiatry Res. 2010;181:165–73.

    Article  PubMed  Google Scholar 

  182. Brevers D, Bechara A, Hermoye L, Divano L, Kornreich C, Verbanck P, et al. Comfort for uncertainty in pathological gamblers: a fMRI study. Behav Brain Res. 2015;278:262–70.

    Article  PubMed  Google Scholar 

  183. Erritzoe D, Tziortzi A, Bargiela D, Colasanti A, Searle GE, Gunn RN, et al. In vivo imaging of cerebral dopamine D3 receptors in alcoholism. Neuropsychopharmacology. 2014;39:1703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bloomfield MA, Morgan CJ, Egerton A, Kapur S, Curran HV, Howes OD. Dopaminergic function in cannabis users and its relationship to cannabis-induced psychotic symptoms. Biol Psychiatry. 2014;75:470–8.

    Article  CAS  PubMed  Google Scholar 

  185. Wu JC, Bell K, Najafi A, Widmark C, Keator D, Tang C, et al. Decreasing striatal 6-FDOPA uptake with increasing duration of cocaine withdrawal. Neuropsychopharmacology. 1997;17:402–9.

    Article  CAS  PubMed  Google Scholar 

  186. Rademacher L, Prinz S, Winz O, Henkel K, Dietrich CA, Schmaljohann J, et al. Effects of Smoking Cessation on Presynaptic Dopamine Function of Addicted Male Smokers. Biol Psychiatry. 2016;80:198–206.

    Article  CAS  PubMed  Google Scholar 

  187. Bloomfield MA, Pepper F, Egerton A, Demjaha A, Tomasi G, Mouchlianitis E, et al. Dopamine function in cigarette smokers: an [(1)(8)F]-DOPA PET study. Neuropsychopharmacology. 2014;39:2397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Heinz A, Siessmeier T, Wrase J, Buchholz HG, Grunder G, Kumakura Y, et al. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry. 2005;162:1515–20.

    Article  PubMed  Google Scholar 

  189. Salokangas RK, Vilkman H, Ilonen T, Taiminen T, Bergman J, Haaparanta M, et al. High levels of dopamine activity in the basal ganglia of cigarette smokers. Am J Psychiatry. 2000;157:632–4.

    Article  CAS  PubMed  Google Scholar 

  190. Tai YF, Hoshi R, Brignell CM, Cohen L, Brooks DJ, Curran HV, et al. Persistent nigrostriatal dopaminergic abnormalities in ex-users of MDMA (‘Ecstasy’): an 18F-dopa PET study. Neuropsychopharmacology. 2011;36:735–43.

    Article  CAS  PubMed  Google Scholar 

  191. Kumakura Y, Gjedde A, Caprioli D, Kienast T, Beck A, Plotkin M, et al. Increased turnover of dopamine in caudate nucleus of detoxified alcoholic patients. PLoS ONE. 2013;8:e73903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hermann D, Hirth N, Reimold M, Batra A, Smolka MN, Hoffmann S, et al. Low mu-opioid receptor status in alcohol dependence identified by combined positron emission tomography and post-mortem brain analysis. Neuropsychopharmacology. 2017;42:606–14.

    Article  CAS  PubMed  Google Scholar 

  193. Nuechterlein EB, Ni L, Domino EF, Zubieta JK. Nicotine-specific and non-specific effects of cigarette smoking on endogenous opioid mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2016;69:69–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Weerts EM, Wand GS, Kuwabara H, Munro CA, Dannals RF, Hilton J, et al. Positron emission tomography imaging of mu- and delta-opioid receptor binding in alcohol-dependent and healthy control subjects. Alcohol Clin Exp Res. 2011;35:2162–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hu J, Henry S, Gallezot JD, Ropchan J, Neumaier JF, Potenza MN, et al. Serotonin 1B receptor imaging in alcohol dependence. Biol Psychiatry. 2010;67:800–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Buchert R, Thomasius R, Wilke F, Petersen K, Nebeling B, Obrocki J, et al. A voxel-based PET investigation of the long-term effects of “Ecstasy” consumption on brain serotonin transporters. Am J Psychiatry. 2004;161:1181–9.

    Article  PubMed  Google Scholar 

  197. Buchert R, Thomasius R, Nebeling B, Petersen K, Obrocki J, Jenicke L, et al. Long-term effects of “ecstasy” use on serotonin transporters of the brain investigated by PET. J Nucl Med. 2003;44:375–84.

    CAS  PubMed  Google Scholar 

  198. Urban NB, Girgis RR, Talbot PS, Kegeles LS, Xu X, Frankle WG, et al. Sustained recreational use of ecstasy is associated with altered pre and postsynaptic markers of serotonin transmission in neocortical areas: a PET study with [(1)(1)C]DASB and [(1)(1)C]MDL 100907. Neuropsychopharmacology. 2012;37:1465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Selvaraj S, Hoshi R, Bhagwagar Z, Murthy NV, Hinz R, Cowen P, et al. Brain serotonin transporter binding in former users of MDMA (‘ecstasy’). Br J Psychiatry. 2009;194:355–9.

    Article  PubMed  Google Scholar 

  200. McCann UD, Szabo Z, Seckin E, Rosenblatt P, Mathews WB, Ravert HT, et al. Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11C]McN5652 and [11C]DASB. Neuropsychopharmacology. 2005;30:1741–50.

    Article  CAS  PubMed  Google Scholar 

  201. Buchert R, Thiele F, Thomasius R, Wilke F, Petersen K, Brenner W, et al. Ecstasy-induced reduction of the availability of the brain serotonin transporter as revealed by [11C](+)McN5652- PET and the multi-linear reference tissue model: loss of transporters or artifact of tracer kinetic modelling? J Psychopharmacol. 2007;21:628–34.

    Article  CAS  PubMed  Google Scholar 

  202. Kish SJ, Lerch J, Furukawa Y, Tong J, McCluskey T, Wilkins D, et al. Decreased cerebral cortical serotonin transporter binding in ecstasy users: a positron emission tomography/[(11)C]DASB and structural brain imaging study. Brain. 2010;133:1779–97.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Brown AK, George DT, Fujita M, Liow JS, Ichise M, Hibbeln J, et al. PET [11C]DASB imaging of serotonin transporters in patients with alcoholism. Alcohol Clin Exp Res. 2007;31:28–32.

    Article  CAS  PubMed  Google Scholar 

  204. Lingford-Hughes A, Myers J, Watson B, Reid AG, Kalk N, Feeney A, et al. Using [(11)C]Ro15 4513 PET to characterise GABA-benzodiazepine receptors in opiate addiction: Similarities and differences with alcoholism. Neuroimage. 2016;132:1–7.

    Article  CAS  PubMed  Google Scholar 

  205. Lingford-Hughes AR, Wilson SJ, Cunningham VJ, Feeney A, Stevenson B, Brooks DJ, et al. GABA-benzodiazepine receptor function in alcohol dependence: a combined 11C-flumazenil PET and pharmacodynamic study. Psychopharmacol (Berl). 2005;180:595–606.

    Article  CAS  Google Scholar 

  206. Litton JE, Neiman J, Pauli S, Farde L, Hindmarsh T, Halldin C, et al. PET analysis of [11C]flumazenil binding to benzodiazepine receptors in chronic alcohol-dependent men and healthy controls. Psychiatry Res. 1993;50:1–13.

    Article  CAS  PubMed  Google Scholar 

  207. Stokes PR, Benecke A, Myers J, Erritzoe D, Watson BJ, Kalk N, et al. History of cigarette smoking is associated with higher limbic GABAA receptor availability. Neuroimage. 2013;69:70–7.

    Article  CAS  PubMed  Google Scholar 

  208. Cosgrove KP, McKay R, Esterlis I, Kloczynski T, Perkins E, Bois F, et al. Tobacco smoking interferes with GABAA receptor neuroadaptations during prolonged alcohol withdrawal. Proc Natl Acad Sci USA. 2014;111:18031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by a Grant-in-Aid from Okanagan College, Kelowna BC, Canada. The Province of British Columbia government and the British Columbia Lottery Corporation (BCLC) had no involvement in the ideas expressed herein, and impose no constraints on publishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zack.

Ethics declarations

Conflict of interest

LC is the Director of the Centre for Gambling Research at UBC, which is supported by funding from the Province of British Columbia and the British Columbia Lottery Corporation (BCLC), a Canadian Crown Corporation. LC receives funding from the Natural Sciences and Engineering Research Council (Canada). LC has received a speaker/travel honorarium from Svenska Spel (Sweden) and an award from the National Center for Responsible Gaming (US). He has not received any further direct or indirect payments from the gambling industry or groups substantially funded by gambling. He has provided paid consultancy to, and received royalties from, Cambridge Cognition Ltd. relating to neurocognitive testing. IB holds operating grants from the Canadian Institutes of Health Research and National Institutes of Health and declares no conflict of interest. MZ holds an operating grant from The National Center for Responsible Gaming (US).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, L., Boileau, I. & Zack, M. Neuroimaging of reward mechanisms in Gambling disorder: an integrative review. Mol Psychiatry 24, 674–693 (2019). https://doi.org/10.1038/s41380-018-0230-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0230-2

This article is cited by

Search

Quick links