Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Maternal autoantibody related autism: mechanisms and pathways

Abstract

It has been estimated that autism spectrum disorder (ASD) now affects 1 in 59 children in the United States. Although the cause(s) of ASD remain largely unknown, it is becoming increasingly apparent that ASD can no longer be defined simply as a behavioral disorder, but is in effect a rather complex and highly heterogeneous biological disorder. Up until recently the brain was thought to be “immune privileged.” However, it is now known that the immune system plays critical roles in the development and functioning of the brain throughout life. Recent evidence from multiple investigators has illustrated the deleterious role that dysregulation of the maternal immune system during gestation can play in the manifestation of changes in neurodevelopment, resulting in the development of neurobehavioral disorders such as ASD. One potential etiologic pathway through which the maternal immune system can interfere with neurodevelopment is through maternal autoantibodies that recognize proteins in the developing fetal brain. This mechanism of pathogenesis is now thought to lead to a subphenotype of ASD that has been termed maternal autoantibody related (MAR) ASD. This review provides an overview of the current research implicating the presence of brain-reactive maternal autoantibodies as a risk factor for MAR ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. APA. Diagnostic and statistical manual of mental disorders: DSM-V, vol. 5th. Arlington, VA: American Psychiatric Association; 2013.

    Google Scholar 

  2. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68:1095–102.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gronborg TK, Schendel DE, Parner ET. Recurrence of autism spectrum disorders in full- and half-siblings and trends over time: a population-based cohort study. JAMA Pediatr. 2013;167:947–53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim YS, Leventhal BL. Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biol Psychiatry. 2015;77:66–74.

    Article  CAS  PubMed  Google Scholar 

  5. Atladottir HO, Pedersen MG, Thorsen P, Mortensen PB, Deleuran B, Eaton WW, et al. Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics. 2009;124:687–94.

    Article  PubMed  Google Scholar 

  6. Croen LA, Grether JK, Yoshida CK, Odouli R, Van de Water J. Maternal autoimmune diseases, asthma and allergies, and childhood autism spectrum disorders: a case-control study. Arch Pediatr Adolesc Med. 2005;159:151–7.

    Article  PubMed  Google Scholar 

  7. Sweeten TL, Bowyer SL, Posey DJ, Halberstadt GM, McDougle CJ. Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics. 2003;112:e420.

    Article  PubMed  Google Scholar 

  8. Atladottir HO, Thorsen P, Ostergaard L, Schendel DE, Lemcke S, Abdallah M, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2010;40:1423–30.

    Article  PubMed  Google Scholar 

  9. Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003;23:297–302.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Abdallah MW, Larsen N, Grove J, Bonefeld-Jorgensen EC, Norgaard-Pedersen B, Hougaard DM, et al. Neonatal chemokine levels and risk of autism spectrum disorders: findings from a Danish historic birth cohort follow-up study. Cytokine. 2013;61:370–6.

    Article  CAS  PubMed  Google Scholar 

  11. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011;25:40–5.

    Article  CAS  PubMed  Google Scholar 

  12. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol. 2011;232:196–9.

    Article  CAS  PubMed  Google Scholar 

  13. Zerbo O, Yoshida C, Grether JK, Van de Water J, Ashwood P, Delorenze GN, et al. Neonatal cytokines and chemokines and risk of Autism Spectrum Disorder: the Early Markers for Autism (EMA) study: a case-control study. J Neuroinflamm. 2014;11:113.

    Article  CAS  Google Scholar 

  14. Jones KL, Croen LA, Yoshida CK, Heuer L, Hansen R, Zerbo O, et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol Psychiatry. 2017;22:273–9.

    Article  CAS  PubMed  Google Scholar 

  15. Braunschweig D, Van de Water J. Maternal autoantibodies in autism. Arch Neurol. 2012;69:693–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14:353–6.

    Article  CAS  PubMed  Google Scholar 

  17. Chaouat G. The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol. 2007;29:95–113.

    Article  PubMed  Google Scholar 

  18. Garty BZ, Ludomirsky A, Danon YL, Peter JB, Douglas SD. Placental transfer of immunoglobulin G subclasses. Clin Diagn Lab Immunol. 1994;1:667–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van de Perre P. Transfer of antibody via mother’s milk. Vaccine. 2003;21:3374–6.

    Article  PubMed  CAS  Google Scholar 

  20. Saunders NR, Liddelow SA, Dziegielewska KM. Barrier mechanisms in the developing brain. Front Pharmacol. 2012;3:46.

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Carroll P, Bertorini TE, Jacob G, Mitchell CW, Graff J. Transient neonatal myasthenia gravis in a baby born to a mother with new-onset anti-MuSK-mediated myasthenia gravis. J Clin Neuromuscul Dis. 2009;11:69–71.

    Article  PubMed  Google Scholar 

  22. Hoff JM, Daltveit AK, Gilhus NE. Artrogryposis multiplex congenita–a rare fetal condition caused by maternal myasthenia gravis. Acta Neurol Scand Suppl. 2006;183:26–7.

    Article  CAS  PubMed  Google Scholar 

  23. Diamond B, Honig G, Mader S, Brimberg L, Volpe BT. Brain-reactive antibodies and disease. Annu Rev Immunol. 2013;31:345–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Warren RP, Cole P, Odell JD, Pingree CB, Warren WL, White E, et al. Detection of maternal antibodies in infantile autism. J Am Acad Child Adolesc Psychiatry. 1990;29:873–7.

    Article  CAS  PubMed  Google Scholar 

  25. Dalton P, Deacon R, Blamire A, Pike M, McKinlay I, Stein J, et al. Maternal neuronal antibodies associated with autism and a language disorder. Ann Neurol. 2003;53:533–7.

    Article  PubMed  Google Scholar 

  26. Braunschweig D, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, et al. Autism: maternally derived antibodies specific for fetal brain proteins. Neurotoxicology. 2007;29:226–31.

    PubMed  PubMed Central  Google Scholar 

  27. Zimmerman AW, Connors SL, Matteson KJ, Lee LC, Singer HS, Castaneda JA, et al. Maternal antibrain antibodies in autism. Brain Behav Immun. 2007;21:351–7.

    Article  CAS  PubMed  Google Scholar 

  28. Singer HS, Morris CM, Gause CD, Gillin PK, Crawford S, Zimmerman AW. Antibodies against fetal brain in sera of mothers with autistic children. J Neuroimmunol. 2008;194:165–72.

    Article  CAS  PubMed  Google Scholar 

  29. Rossi CC, Fuentes J, Van de Water J, Amaral DG. Brief report: antibodies reacting to brain tissue in basque spanish children with autism spectrum disorder and their mothers. J Autism Dev Disord. 2013;25:1123–35.

  30. Brimberg L, Sadiq A, Gregersen PK, Diamond B. Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder. Mol Psychiatry. 2013;18:1171–7.

    Article  CAS  PubMed  Google Scholar 

  31. Mitchell MK, Gregersen PK, Johnson S, Parsons R, Vlahov D. New York Cancer P. The New York Cancer Project: rationale, organization, design, and baseline characteristics. J Urban Health. 2004;81:301–10.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Croen LA, Braunschweig D, Haapanen L, Yoshida CK, Fireman B, Grether JK, et al. Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry. 2008;64:583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Braunschweig D, Duncanson P, Boyce R, Hansen R, Ashwood P, Pessah IN, et al. Behavioral correlates of maternal antibody status among children with autism. J Autism Dev Disord. 2012;42:1435–45.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Futamatsu H, Suzuki J, Mizuno S, Koga N, Adachi S, Kosuge H, et al. Hepatocyte growth factor ameliorates the progression of experimental autoimmune myocarditis: a potential role for induction of T helper 2 cytokines. Circ Res. 2005;96:823–30.

    Article  CAS  PubMed  Google Scholar 

  35. Eagleson KL, Xie Z, Levitt P. The Pleiotropic MET receptor network: circuit development and the neural-medical interface of autism. Biol Psychiatry. 2017;81:424–33.

    Article  CAS  PubMed  Google Scholar 

  36. Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA. 2006;103:16834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Campbell DB, Li C, Sutcliffe JS, Persico AM, Levitt P. Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Res. 2008;1:158–68.

    Article  Google Scholar 

  38. Jackson PB, Boccuto L, Skinner C, Collins JS, Neri G, Gurrieri F, et al. Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder. Autism Res. 2009;2:232–6.

    Article  PubMed  Google Scholar 

  39. Thanseem I, Nakamura K, Miyachi T, Toyota T, Yamada S, Tsujii M, et al. Further evidence for the role of MET in autism susceptibility. Neurosci Res. 2010;68:137–41.

    Article  CAS  PubMed  Google Scholar 

  40. Heuer L, Braunschweig D, Ashwood P, Van de Water J, Campbell DB. Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression. Transl Psychiatry. 2011;1:e48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Piras IS, Haapanen L, Napolioni V, Sacco R, Van de Water J, Persico AM. Anti-brain antibodies are associated with more severe cognitive and behavioral profiles in Italian children with Autism Spectrum Disorder. Brain Behav Immun. 2014;38:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Halladay AK, Bishop S, Constantino JN, Daniels AM, Koenig K, Palmer K, et al. Sex and gender differences in autism spectrum disorder: summarizing evidence gaps and identifying emerging areas of priority. Mol Autism. 2015;6:36.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57:245–54.

    Article  CAS  PubMed  Google Scholar 

  44. Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, et al. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry. 2005;62:1366–76.

    Article  PubMed  Google Scholar 

  45. Schumann CM, Bloss CS, Barnes CC, Wideman GM, Carper RA, Akshoomoff N, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci. 2010;30:4419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nordahl CW, Braunschweig D, Iosif AM, Lee A, Rogers S, Ashwood P, et al. Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder. Brain Behav Immun. 2013;30:61–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Edmiston E, Ashwood P, Van de Water J. Autoimmunity, autoantibodies, and autism spectrum disorder. Biol Psychiatry. 2017;81:383–90.

    Article  CAS  PubMed  Google Scholar 

  48. Bressler JP, Gillin PK, O’Driscoll C, Kiihl S, Solomon M, Zimmerman AW. Maternal antibody reactivity to lymphocytes of offspring with autism. Pediatr Neurol. 2012;47:337–40.

    Article  PubMed  Google Scholar 

  49. Martin LA, Ashwood P, Braunschweig D, Cabanlit M, Van de Water J, Amaral DG. Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain Behav Immun. 2008;22:806–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singer HS, Morris C, Gause C, Pollard M, Zimmerman AW, Pletnikov M. Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: a pregnant dam mouse model. J Neuroimmunol. 2009;211:39–48.

    Article  CAS  PubMed  Google Scholar 

  51. Kadam SD, French BM, Kim ST, Morris-Berry CM, Zimmerman AW, Blue ME, et al. Altered postnatal cell proliferation in brains of mouse pups prenatally exposed to IgG from mothers of children with autistic disorder. J Exp Neurosci. 2013;7:93–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Braunschweig D, Golub MS, Koenig CM, Qi L, Pessah IN, Van de Water J, et al. Maternal autism-associated IgG antibodies delay development and produce anxiety in a mouse gestational transfer model. J Neuroimmunol. 2012;252:56–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Braunschweig D, Krakowiak P, Duncanson P, Boyce R, Hansen RL, Ashwood P, et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry. 2013;3:e277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Quach TT, Duchemin AM, Rogemond V, Aguera M, Honnorat J, Belin MF, et al. Involvement of collapsin response mediator proteins in the neurite extension induced by neurotrophins in dorsal root ganglion neurons. Mol Cell Neurosci. 2004;25:433–43.

    Article  CAS  PubMed  Google Scholar 

  55. Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J. Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol. 2003;28:51–64.

    Article  CAS  PubMed  Google Scholar 

  56. Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL, et al. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics. 2012;129:e1121–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xu G, Jing J, Bowers K, Liu B, Bao W. Maternal diabetes and the risk of autism spectrum disorders in the offspring: a systematic review and meta-analysis. J Autism Dev Disord. 2014;44:766–75.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Walker CK, Krakowiak P, Baker A, Hansen RL, Ozonoff S, Hertz-Picciotto I. Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatr. 2015;169:154–62.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Connolly N, Anixt J, Manning P, Ping ILD, Marsolo KA, Bowers K. Maternal metabolic risk factors for autism spectrum disorder-an analysis of electronic medical records and linked birth data. Autism Res. 2016;9:829–37.

    Article  PubMed  Google Scholar 

  60. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    Article  CAS  PubMed  Google Scholar 

  61. Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10:466–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Korkmazer E, Solak N. Correlation between inflammatory markers and insulin resistance in pregnancy. J Obstet Gynaecol. 2015;35:142–5.

    Article  CAS  PubMed  Google Scholar 

  63. Pantham P, Aye IL, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015;36:709–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matarese G, Procaccini C, De Rosa V. At the crossroad of T cells, adipose tissue, and diabetes. Immunol Rev. 2012;249:116–34.

    Article  CAS  PubMed  Google Scholar 

  65. Procaccini C, De Rosa V, Galgani M, Carbone F, La Rocca C, Formisano L, et al. Role of adipokines signaling in the modulation of T cells function. Front Immunol. 2013;4:332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Martinez-Cerdeno V, Camacho J, Fox E, Miller E, Ariza J, Kienzle D, et al. Prenatal exposure to autism-specific maternal autoantibodies alters proliferation of cortical neural precursor cells, enlarges brain, and increases neuronal size in adult animals. Cereb Cortex. 2016;26:374–83.

    Article  PubMed  Google Scholar 

  67. Ariza J, Hurtado J, Rogers H, Ikeda R, Dill M, Steward C, et al. Maternal autoimmune antibodies alter the dendritic arbor and spine numbers in the infragranular layers of the cortex. PLoS ONE. 2017;12:e0183443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Camacho J, Jones KL, Miller E, Ariza J, Noctor S, Van de Water J, et al. Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice. Behav Brain Res. 2014;266:46–51.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Beraldo FH, Thomas A, Kolisnyk B, Hirata PH, De Jaeger X, Martyn AC, et al. Hyperactivity and attention deficits in mice with decreased levels of stress-inducible phosphoprotein 1 (STIP1). Dis Models. 2015;8:1457–66.

    CAS  Google Scholar 

  70. Bauman MD, Iosif AM, Ashwood P, Braunschweig D, Lee A, Schumann CM, et al. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry. 2013;3:e278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Murphy K. Janeway’s Immunobiology. 8 edn, vol. 1. Garland Science: New York, 2011, 868 pp.

  72. Van Regenmortel MH. From absolute to exquisite specificity. Reflections on the fuzzy nature of species, specificity and antigenic sites. J Immunol Methods. 1998;216:37–48.

    Article  PubMed  Google Scholar 

  73. Edmiston E, Jones KL, Vu T, Ashwood P, Van de Water J. Identification of the antigenic epitopes of maternal autoantibodies in autism spectrum disorders. Brain Behav Immun. 2018;69:399–407.

    Article  CAS  PubMed  Google Scholar 

  74. Jones K, Pride M, Edmiston E, Yang M, Silverman J, Crawley J, et al. Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Molecular Psychiatry. 2018 (in press).

  75. Costumbrado J, Ghassemzadeh S. Rh Incompatibility. StatPearls: Treasure Island (FL), 2017.

  76. Croen LA, Matevia M, Yoshida CK, Grether JK. Maternal Rh D status, anti-D immune globulin exposure during pregnancy, and risk of autism spectrum disorders. Am J Obstet Gynecol. 2008; 199:234.e231–6.

    Article  CAS  Google Scholar 

  77. Steinman MQ, Gao V, Alberini CM. The Role of Lactate-Mediated Metabolic Coupling between Astrocytes and Neurons in Long-Term Memory Formation. Frontiers in integrative neuroscience 2016;10:10.

  78. Hashimoto T, Hussien R, Cho HS, Kaufer D, Brooks GA. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS ONE 2008;3:e2915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hajj GN, Santos TG, Cook ZS, Martins VR. Developmental expression of prion protein and its ligands stress-inducible protein 1 and vitronectin. J Comp Neurol 2009;517:371–84.

    Article  CAS  PubMed  Google Scholar 

  80. Lopes MH, Hajj GN, Muras AG, Mancini GL, Castro RM, Ribeiro KC et al. Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci 2005;25:11330–39.

    Article  CAS  PubMed  Google Scholar 

  81. Roffé M, Beraldo FH, Bester R, Nunziante M, Bach C, Mancini G et al. Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR. Proc Natl Acad Sci U S A 2010;107:13147–52.

    Article  CAS  Google Scholar 

  82. Coitinho AS, Lopes MH, Hajj GN, Rossato JI, Freitas AR, Castro CC et al. Short-term memory formation and long-term memory consolidation are enhanced by cellular prion association to stress-inducible protein 1. Neurobiol Dis 2007;26:282–90.

    Article  CAS  PubMed  Google Scholar 

  83. Yamashita N, Ohshima T, Nakamura F, Kolattukudy P, Honnorat J, Mikoshiba K et al. Phosphorylation of CRMP2 (collapsin response mediator protein 2) is involved in proper dendritic field organization. J Neurosci 2012;32:1360–65.

    Article  CAS  PubMed  Google Scholar 

  84. Kurnellas MP, Li H, Jain MR, Giraud SN, Nicot AB, Ratnayake A et al. Reduced expression of plasma membrane calcium ATPase 2 and collapsin response mediator protein 1 promotes death of spinal cord neurons. Cell Death Differ 2010;17:1501–10.

    Article  CAS  Google Scholar 

  85. Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN. Y-box-binding protein 1 (YB-1) and its functions. Biochemistry (Mosc) 2011;76:1402–33.

    Article  CAS  Google Scholar 

  86. Akum BF, Chen M, Gunderson SI, Riefler GM, Scerri-Hansen MM, Firestein BL. Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 2004;7:145–52.

    Article  CAS  PubMed  Google Scholar 

  87. Tseng CY, Firestein BL. The role of PSD-95 and cypin in morphological changes in dendrites following sublethal NMDA exposure. J Neurosci 2011;31:15468–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of the CHARGE study, and all of the families involved in this research.

Funding

This study was funded by the NIEHS Center for Children’s Environmental Health and Environmental Protection Agency (EPA) grants (2P01ES011269-11, 83543201 respectively), the NIEHS-funded CHARGE study (R01ES015359), the NICHD funded IDDRC 054 (U54HD079125), and the Hartwell and Hearst Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy Van de Water.

Ethics declarations

Conflict of interest

VdW is the founder of a startup company that will focus on the development of the MAR ASD autoantibody profile as an assessment of risk for a child developing ASD. VdW received consulting fees from Pediatric Bioscience (no longer in operation) from Jan 1, 2015 until October 2015. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, K.L., Van de Water, J. Maternal autoantibody related autism: mechanisms and pathways. Mol Psychiatry 24, 252–265 (2019). https://doi.org/10.1038/s41380-018-0099-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0099-0

This article is cited by

Search

Quick links