Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A comparative study of the genetic components of three subcategories of autism spectrum disorder

Abstract

The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) controversially combined previously distinct subcategories of autism spectrum disorder (ASD) into a single diagnostic category. However, genetic convergences and divergences between different ASD subcategories are unclear. By retrieving 1725 exonic de novo mutations (DNMs) from 1628 subjects with autistic disorder (AD), 1873 from 1564 subjects with pervasive developmental disorder not otherwise specified (PDD-NOS), 276 from 247 subjects with Asperger’s syndrome (AS), and 2077 from 2299 controls, we found that rates of putative functional DNMs (loss-of-function, predicted deleterious missense, and frameshift) in all three subcategories were significantly higher than those in control. We then investigated the convergences and divergences of the three ASD subcategories based on four genetic aspects: whether any two ASD subcategories (1) shared significantly more genes with functional DNMs, (2) exhibited similar spatio-temporal expression patterns, (3) shared significantly more candidate genes, and (4) shared some ASD-associated functional pathways. It is revealed that AD and PDD-NOS were broadly convergent in terms of all four genetic aspects, suggesting these two ASD subcategories may be genetically combined. AS was divergent to AD and PDD-NOS for aspects of functional DNMs and expression patterns, whereas AS and AD/PDD-NOS were convergent for aspects of candidate genes and functional pathways. Our results indicated that the three ASD subcategories present more genetic convergences than divergences, favouring DSM-5’s new classification. This study suggests that specifically defined genotypes and their corresponding phenotypes should be integrated analyzed for precise diagnosis of complex disorders, such as ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lai M-CC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383:896–910.

    Article  PubMed  Google Scholar 

  2. Colvert E, Tick B, McEwen F, Stewart C, Curran SR, Woodhouse E, et al. Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry. 2015;72:415–23.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Association AP. Diagnostic and statistical manual of mental disorders (4th ed.). 1994.

  4. Association AP. Diagnostic and statistical manual of mental disorders, fourth edition, text revision (DSM-IV-TR). Text. 2000;1:943.

    Google Scholar 

  5. Macintosh KE, Dissanayake C. Annotation: the similarities and differences between autistic disorder and Asperger’s disorder: a review of the empirical evidence. J Child Psychol Psychiatry. 2004;45:421–34.

    Article  PubMed  Google Scholar 

  6. Association AP, American Psychiatric Association, Association AP. Diagnostic and statistical manual of mental disorders, 5th edition (DSM-5). 2013. https://doi.org/10.1176/appi.books.9780890425596.744053.

  7. Frazier TW, Youngstrom EA, Speer L, Embacher R, Law P, Constantino J, et al. Validation of proposed DSM-5 criteria for autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2012;51:28–40. https://doi.org/10.1016/j.jaac.2011.09.021

    Article  PubMed  Google Scholar 

  8. Mattila ML, Kielinen M, Linna SL, Jussila K, Ebeling H, Bloigu R, et al. Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. J Am Acad Child Adolesc Psychiatry. 2011;50:583–92.

    Article  PubMed  Google Scholar 

  9. Barton ML, Robins DL, Jashar D, Brennan L, Fein D. Sensitivity and specificity of proposed DSM-5 criteria for autism spectrum disorder in toddlers. J Autism Dev Disord. 2013;43:1184–95.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lord C, Petkova E, Hus V, Gan W, Lu F, Martin DM, et al. A multisite study of the clinical diagnosis of different autism spectrum disorders. Arch Gen Psychiatry. 2012;69:306–13.

    Article  PubMed  Google Scholar 

  11. Maenner MJ, Rice CE, Arneson CL, Cunniff C, Schieve LA, Carpenter LA, et al. Potential impact of DSM-5 criteria on autism spectrum disorder prevalence estimates. JAMA Psychiatry. 2014;71:292.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gibbs V, Aldridge F, Chandler F, Witzlsperger E, Smith K. Brief report: an exploratory study comparing diagnostic outcomes for autism spectrum disorders under DSM-IV-TR with the proposed DSM-5 revision. J Autism Dev Disord. 2012;42:1750–6.

    Article  PubMed  Google Scholar 

  13. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Consortium TAGP. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39:319–28.

    Article  CAS  Google Scholar 

  15. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glessner J, Wang K, Cai G, Korvatska O. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature. 2009;459:569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466:368–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF, Griffing AR, et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am J Hum Genet. 2010;87:316–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O’Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485:246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485:237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485:242–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I, Rosenbaum J, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74:285–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13:565–75.

    Article  CAS  PubMed  Google Scholar 

  25. Iossifov I, O’roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;13:216–21.

    Article  CAS  Google Scholar 

  26. Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D, Jin X, et al. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell. 2012;151:1431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang Y-H, Yuen RKC, Jin X, Wang M, Chen N, Wu X, et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013;93:249–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yuen RKC, Thiruvahindrapuram B, Merico D, Walker S, Tammimies K, Hoang N, et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med. 2015;21:185–91.

    Article  CAS  PubMed  Google Scholar 

  29. Wang T, Guo H, Bo X, Stessman HAF, Wu H, Coe BP, et al. De novo genic mutations among a Chinese autism spectrum disorder cohort. Nat Commun. 2016;7:13316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stessman HA, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49:515–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krumm N, O’Roak BJ, Shendure J, Eichler EE. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 2014;37:95–105.

    Article  CAS  PubMed  Google Scholar 

  32. Ebert DH, Greenberg ME. Activity-dependent neuronal signalling and autism spectrum disorder. Nature. 2013;493:327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang J, Gilman SR, Chiang AH, Sanders SJ, Vitkup D. Genotype to phenotype relationships in autism spectrum disorders. Nat Neurosci. 2015;18:191–8.

    Article  CAS  PubMed  Google Scholar 

  34. De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Ercument Cicek A, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hormozdiari F, Penn O, Borenstein E, Eichler EE. The discovery of integrated gene networks for autism and related disorders. Genome Res. 2015;25:142–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat Neurosci. 2016;19:1454–62. https://doi.org/10.1038/nn.4353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parikshak NN, Luo R, Zhang A, Won H, Lowe JK, Chandran V, et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell. 2013;155:1008–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li J, Wang L, Yu P, Shi L, Zhang K, Sun ZS, et al. Vitamin D-related genes are subjected to significant de novo mutation burdens in autism spectrum disorder. Am J Med Genet Part B Neuropsychiatr Genet. 2017;174:568–77.

    Article  CAS  Google Scholar 

  39. Li J, Wang L, Guo H, Shi L, Zhang K, Tang M, et al. Targeted sequencing and functional analysis reveal brain-size-related genes and their networks in autism spectrum disorders. Mol Psychiatry. 2017;22:1282–90. https://doi.org/10.1038/mp.2017.140

    Article  CAS  PubMed  Google Scholar 

  40. Li J, Cai T, Jiang Y, Chen H, He X, Chen C, et al. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol Psychiatry. 2015;21:1–8.

    Google Scholar 

  41. Fitzgerald TW, Gerety SS, Jones WD, van Kogelenberg M, King DA, McRae J, et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2014;519:223–8.

    PubMed Central  Google Scholar 

  42. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Shi L, Zhang K, Zhang Y, Hu S, Zhao T, et al. VarCards: an integrated genetic and clinical database for coding variants in the human genome. Nucleic Acids Res. 2017;46:D1039–48. https://doi.org/10.1093/nar/gkx1039

    Article  CAS  PubMed Central  Google Scholar 

  44. He X, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JS, et al. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet. 2013;9:e1003671 https://doi.org/10.1371/journal.pgen.1003671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fischbach GD, Lord C. The Simons simplex collection: a resource for identification of autism genetic risk factors. Neuron. 2010;68:192–5.

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Jiang Y, Wang T, Chen H, Xie Q, Shao Q, et al. mirTrios: an integrated pipeline for detection of de novo and rare inherited mutations from trios-based next-generation sequencing. J Med Genet. 2015;52:275–81.

    Article  CAS  PubMed  Google Scholar 

  47. Ran X, Li J, Shao Q, Chen H, Lin Z, Sun ZS, et al. EpilepsyGene: a genetic resource for genes and mutations related to epilepsy. Nucleic Acids Res. 2015;43:D893–9.

    Article  CAS  PubMed  Google Scholar 

  48. Liu X, Jian X, Boerwinkle E. dbNSFPv2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat. 2013;34:E2393–402. https://doi.org/10.1002/humu.22376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A, McGrath LM, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet. 2014;46:944–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu X, Wells AB, O’Brien DR, Nehorai A, Dougherty JD. Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J Neurosci. 2014;34:1420–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, et al. Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 2013;41:D996–1000. https://doi.org/10.1093/nar/gks1042

    Article  CAS  PubMed  Google Scholar 

  52. Langfelder P, Horvath S, Fisher R, Zhou X, Kao M, Wong W, et al. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.

    Article  CAS  Google Scholar 

  53. Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 2011;7:e1001273 https://doi.org/10.1371/journal.pgen.1001273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature. 2011;478:483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Willsey AJ, Sanders SJ, Li M, Dong S, Tebbenkamp AT, Muhle RA, et al. XCoexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell. 2013;155:997–1007. https://doi.org/10.1016/j.cell.2013.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ben-David E, Shifman S. Combined analysis of exome sequencing points toward a major role for transcription regulation during brain development in autism. Mol Psychiatry. 2013;18:1054–6.

    Article  CAS  PubMed  Google Scholar 

  57. Li J, Shi M, Ma Z, Zhao S, Euskirchen G, Ziskin J, et al. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders. Mol Syst Biol. 2014;10:774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ghosh A, Michalon A, Lindemann L, Fontoura P, Santarelli L. Drug discovery for autism spectrum disorder: challenges and opportunities. Nat Rev Drug Discov. 2013;12:777–90.

    Article  CAS  PubMed  Google Scholar 

  59. de la Torre-Ubieta L, Won HJ, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22:345–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brandler WM, Sebat J. From de novo mutations to personalized therapeutic interventions in autism. Annu Rev Med. 2015;66:487–507.

    Article  CAS  PubMed  Google Scholar 

  61. C Yuen RK, Merico D, Bookman M, L Howe J, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat Neurosci. 2017;20:602–11.

    Article  CAS  PubMed  Google Scholar 

  62. van Bon BWM, Coe BP, Bernier R, Green C, Gerdts J, Witherspoon K, et al. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol Psychiatry. 2016;21:126–32. https://doi.org/10.1038/mp.2015.5

    Article  CAS  PubMed  Google Scholar 

  63. Cotney J, Muhle Ra, Sanders SJ, Liu L, Willsey AJ, Niu W, et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat Commun. 2015;6:6404.

    Article  CAS  PubMed  Google Scholar 

  64. Durak O, Gao F, Kaeser-Woo YJ, Rueda R, Martorell AJ, Nott A, et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling. Nat Neurosci. 2016;19:1–15.

    Article  CAS  Google Scholar 

  65. Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T, et al. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature. 2016;537:1–19.

    Article  CAS  Google Scholar 

  66. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158:263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ghaziuddin M. Brief report: should the DSM v drop asperger syndrome? J Autism Dev Disord. 2010;40:1146–8.

    Article  PubMed  Google Scholar 

  68. Sprenger L, Bühler E, Poustka L, Bach C, Heinzel-Gutenbrunner M, Kamp-Becker I, et al. Impact of ADHD symptoms on autism spectrum disorder symptom severity. Res Dev Disabil. 2013;34:3545–52.

    Article  PubMed  Google Scholar 

  69. Helsmoortel C, Vulto-van Silfhout AT, Coe BP, Vandeweyer G, Rooms L, van den Ende J, et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nat Genet. 2014;46:380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Geisheker MR, Heymann G, Wang T, Coe BP, Turner TN, Stessman HAF, et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci. 2017;20:1043–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stessman HAF, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet. 2016;98:541–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338:1619–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stessman HA, Bernier R, Eichler EE. A genotype-first approach to defining the subtypes of a complex disease. Cell. 2014;156:872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Constantino JN, Charman T. Diagnosis of autism spectrum disorder: reconciling the syndrome, its diverse origins, and variation in expression. Lancet Neurol. 2016;15:279–91.

    Article  PubMed  Google Scholar 

  75. Vorstman JAS, Parr JR, Moreno-De-Luca D, Anney RJL, Nurnberger JI Jr, Hallmayer JF. Autism genetics: opportunities and challenges for clinical translation. Nat Rev Genet. 2017;18:362–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (31571301) and National Basic Research Program of China (973 Program) (2012CB517900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongsheng Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, S., Zhang, K. et al. A comparative study of the genetic components of three subcategories of autism spectrum disorder. Mol Psychiatry 24, 1720–1731 (2019). https://doi.org/10.1038/s41380-018-0081-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-018-0081-x

This article is cited by

Search

Quick links