Rediscovering the value of families for psychiatric genetics research

This article has been updated

Abstract

As it is likely that both common and rare genetic variation are important for complex disease risk, studies that examine the full range of the allelic frequency distribution should be utilized to dissect the genetic influences on mental illness. The rate limiting factor for inferring an association between a variant and a phenotype is inevitably the total number of copies of the minor allele captured in the studied sample. For rare variation, with minor allele frequencies of 0.5% or less, very large samples of unrelated individuals are necessary to unambiguously associate a locus with an illness. Unfortunately, such large samples are often cost prohibitive. However, by using alternative analytic strategies and studying related individuals, particularly those from large multiplex families, it is possible to reduce the required sample size while maintaining statistical power. We contend that using whole genome sequence (WGS) in extended pedigrees provides a cost-effective strategy for psychiatric gene mapping that complements common variant approaches and WGS in unrelated individuals. This was our impetus for forming the “Pedigree-Based Whole Genome Sequencing of Affective and Psychotic Disorders” consortium. In this review, we provide a rationale for the use of WGS with pedigrees in modern psychiatric genetics research. We begin with a focused review of the current literature, followed by a short history of family-based research in psychiatry. Next, we describe several advantages of pedigrees for WGS research, including power estimates, methods for studying the environment, and endophenotypes. We conclude with a brief description of our consortium and its goals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

Change history

  • 18 April 2019

    The original affiliations 4 and 5 incorrectly listed the country as the USA; this has now been updated to Costa Rica.

References

  1. 1.

    Sullivan PF, Agrawal A, Bulik CM, Andreassen OA, Borglum AD, Breen G, et al. Psychiatric genomics: an update and an agenda. Am J Psychiatry. 2017;175:15–27. appiajp201717030283

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6:95–108.

    CAS  PubMed  Google Scholar 

  3. 3.

    Cross-Disorder Group of the Psychiatric Genomics C. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.

    Google Scholar 

  4. 4.

    Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Flint J, Mott R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet. 2001;2:437–45.

    CAS  PubMed  Google Scholar 

  6. 6.

    Pritchard JK, Cox NJ. The allelic architecture of human disease genes: common disease-common variant…or not? Hum Mol Genet. 2002;11:2417–23.

    CAS  PubMed  Google Scholar 

  7. 7.

    McClellan J, King MC. Genomic analysis of mental illness: a changing landscape. JAMA. 2010;303:2523–4.

    CAS  PubMed  Google Scholar 

  8. 8.

    Sanders SJ, Neale B, Huang H, Werling D, An J-Y, Dong S, et al. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nat Neurosci. 2017;12:1661-1668.

    CAS  PubMed  Google Scholar 

  9. 9.

    Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;265:2037–48.

    CAS  PubMed  Google Scholar 

  10. 10.

    Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2011;13:135–45.

    Google Scholar 

  12. 12.

    Freimer N, Sabatti C. The use of pedigree, sib-pair and association studies of common diseases for genetic mapping and epidemiology. Nat Genet. 2004;36:1045–51.

    CAS  PubMed  Google Scholar 

  13. 13.

    Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11:415–25.

    CAS  PubMed  Google Scholar 

  14. 14.

    Marth GT, Yu F, Indap AR, Garimella K, Gravel S, Leong WF, et al. The functional spectrum of low-frequency coding variation. Genome Biol. 2011;12:R84.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    McClellan J, King MC. Genetic heterogeneity in human disease. Cell. 2010;141:210–7.

    CAS  PubMed  Google Scholar 

  16. 16.

    Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet. 2008;40:695–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13:565–75.

    CAS  PubMed  Google Scholar 

  19. 19.

    MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science. 2012;335:823–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, et al. Rare and low-frequency coding variants alter human adult height. Nature. 2017;542:186–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet. 2001;69:124–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Sveinbjornsson G, Albrechtsen A, Zink F, Gudjonsson SA, Oddson A, Masson G, et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat Genet. 2016;48:314–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Chakravarti A, Clark AG, Mootha VK. Distilling pathophysiology from complex disease genetics. Cell. 2013;155:21–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19:212–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Bansal V, Libiger O, Torkamani A, Schork NJ. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet. 2010;11:773–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Blangero J. Localization and identification of human quantitative trait loci: king harvest has surely come. Curr Opin Genet Dev. 2004;14:233–40.

    CAS  PubMed  Google Scholar 

  27. 27.

    Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95:5–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bailey-Wilson JE, Wilson AF. Linkage analysis in the next-generation sequencing era. Hum Hered. 2011;72:228–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wijsman EM. The role of large pedigrees in an era of high-throughput sequencing. Hum Genet. 2012;131:1555–63.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Epstein MP, Duncan R, Ware EB, Jhun MA, Bielak LF, Zhao W, et al. A statistical approach for rare-variant association testing in affected sibships. Am J Hum Genet. 2015;96:543–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Knight S, Abo RP, Abel HJ, Neklason DW, Tuohy TM, Burt RW, et al. Shared genomic segment analysis: the power to find rare disease variants. Ann Hum Genet. 2012;76:500–9.

    PubMed  Google Scholar 

  32. 32.

    Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.

    Google Scholar 

  33. 33.

    Charney AW, Ruderfer DM, Stahl EA, Moran JL, Chambert K, Belliveau RA, et al. Evidence for genetic heterogeneity between clinical subtypes of bipolar disorder. Transl Psychiatry. 2017;7:e993.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Hou L, Bergen SE, Akula N, Song J, Hultman CM, Landen M, et al. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum Mol Genet. 2016;25:3383–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wray NR, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressive disorder. Nat Genet. 2018;50:668-681.

  36. 36.

    Hall L, Adams M, Arnau-Soler A, Clarke T, Howard D, Zeng Y, et al. Genome-wide meta-analyses of stratified depression in generation Scotland and UK biobank. bioRxiv. 2017;8:9.

    Google Scholar 

  37. 37.

    Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet. 2016;48:1031–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM, Amstadter AB, Ashley-Koch AE, et al. Largest GWAS of PTSD (N = 20,070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol Psychiatry. 2018;23:666-673. 

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Demontis D, Walters R, Martin J, Mattheisen M, Als T, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for ADHD. bioRxiv 2017.

  40. 40.

    Autism Spectrum Disorders Working Group of The Psychiatric Genomics C. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 2017;8:21.

    Google Scholar 

  41. 41.

    Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–76.

    CAS  PubMed  Google Scholar 

  42. 42.

    Manolio T, Collins F, Cox N, Goldstein D, Hindorff L, Hunter D, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Fisher RA. The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb. 1918;52:399–433.

    Google Scholar 

  44. 44.

    Evans DM, Visscher PM, Wray NR. Harnessing the information contained within genome-wide association studies to improve individual prediction of complex disease risk. Hum Mol Genet. 2009;18:3525–31.

    CAS  PubMed  Google Scholar 

  45. 45.

    Purcell S, Wray N, Stone J, Visscher P, O’Donovan M, Sullivan P, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460:748–52.

    CAS  PubMed  Google Scholar 

  46. 46.

    Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. Pitfalls of predicting complex traits from SNPs. Nat Rev Genet. 2013;14:507–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–60.

    CAS  PubMed  Google Scholar 

  48. 48.

    Breen G, Li Q, Roth BL, O’Donnell P, Didriksen M, Dolmetsch R, et al. Translating genome-wide association findings into new therapeutics for psychiatry. Nat Neurosci. 2016;19:1392–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Hyman SE. Revolution stalled. Sci Transl Med. 2012;4:155cm111.

    Google Scholar 

  50. 50.

    Geschwind DH, State MW. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol. 2015;14:1109–20.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485:237–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 2014;515:209–15.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Sanders SJ. First glimpses of the neurobiology of autism spectrum disorder. Curr Opin Genet Dev. 2015;33:80–92.

    CAS  PubMed  Google Scholar 

  55. 55.

    Weiner DJ, Wigdor EM, Ripke S, Walters RK, Kosmicki JA, Grove J, et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat Genet. 2017;49:978–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Shi H, Kichaev G, Pasaniuc B. Contrasting the genetic architecture of 30 complex traits from summary association data. Am J Hum Genet. 2016;99:139–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Singh T, Kurki MI, Curtis D, Purcell SM, Crooks L, McRae J, et al. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci. 2016;19:571–7.

    CAS  PubMed  Google Scholar 

  58. 58.

    Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landen M, et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016;19:1433–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506:179–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148:1223–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Vissers LE, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016;17:9–18.

    CAS  PubMed  Google Scholar 

  63. 63.

    Marshall CR, Howrigan DP, Merico D, Thiruvahindrapuram B, Wu W, Greer DS, et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet. 2017;49:27–35.

    CAS  Google Scholar 

  64. 64.

    Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008;320:539–43.

    CAS  PubMed  Google Scholar 

  65. 65.

    Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011;72:951–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Elia J, Gai X, Xie HM, Perin JC, Geiger E, Glessner JT, et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry. 2010;15:637–46.

    CAS  Google Scholar 

  67. 67.

    Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J, et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA. 1995;92:7612–6.

    CAS  PubMed  Google Scholar 

  68. 68.

    Bassett AS, Lowther C, Merioo D, Costain G, Chow EWC, van Amelsvoort T, et al. Rare genome-wide copy number variation and expression of Schizophrenia in 22q11.2 deletion syndrome. Am J Psychiatry. 2017;174:1054-1063

    PubMed  Google Scholar 

  69. 69.

    Baron M, Risch N, Hamburger R, Mandel B, Kushner S, Newman M, et al. Genetic linkage between X-chromosome markers and bipolar affective illness. Nature. 1987;326:289–92.

    CAS  PubMed  Google Scholar 

  70. 70.

    Egeland JA, Gerhard DS, Pauls DL, Sussex JN, Kidd KK, Allen CR, et al. Bipolar affective disorders linked to DNA markers on chromosome 11. Nature. 1987;325:783–7.

    CAS  PubMed  Google Scholar 

  71. 71.

    Kelsoe JR, Ginns EI, Egeland JA, Gerhard DS, Goldstein AM, Bale SJ, et al. Re-evaluation of the linkage relationship between chromosome 11p loci and the gene for bipolar affective disorder in the Old Order Amish. Nature. 1989;342:238–43.

    CAS  PubMed  Google Scholar 

  72. 72.

    Gershon ES. Marker genotyping errors in old data on X-linkage in bipolar illness. Biol Psychiatry. 1991;29:721–9.

    CAS  PubMed  Google Scholar 

  73. 73.

    Burmeister M, McInnis MG, Zollner S. Psychiatric genetics: progress amid controversy. Nat Rev Genet. 2008;9:527–40.

    CAS  PubMed  Google Scholar 

  74. 74.

    Risch N. Genetic linkage and complex diseases, with special reference to psychiatric disorders. Genet Epidemiol. 1990;7:3–16. discussion 17-45

    CAS  PubMed  Google Scholar 

  75. 75.

    Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.

    CAS  PubMed  Google Scholar 

  76. 76.

    Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538:161–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Olvera RL, Bearden CE, Velligan DI, Almasy L, Carless MA, Curran JE, et al. Common genetic influences on depression, alcohol, and substance use disorders in Mexican-American families. Am J Med Genet B Neuropsychiatr Genet. 2011;156B:561–8.

    CAS  PubMed  Google Scholar 

  78. 78.

    McKay DR, Knowles EE, Winkler AA, Sprooten E, Kochunov P, Olvera RL, et al. Influence of age, sex and genetic factors on the human brain. Brain Imaging Behav. 2014;8:143–52.

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Hinrichs AL, Suarez BK. Incorporating linkage information into a common disease/rare variant framework. Genet Epidemiol. 2011;35(Suppl 1):S74–79.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Wilson AF, Ziegler A. Lessons learned from Genetic Analysis Workshop 17: transitioning from genome-wide association studies to whole-genome statistical genetic analysis. Genet Epidemiol. 2011;35(Suppl 1):S107–114.

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506:185–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Blangero J, Diego VP, Dyer TD, Almeida M, Peralta J, Kent JW, et al. A kernel of truth: statistical advances in polygenic variance component models for complex human pedigrees. Adv Genet. 2013;81:1–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Teng J, Risch N. The relative power of family based and case-control designs for linkage disequilibrium studies of complex human diseases. II. Individual genotyping. Genome Res. 1999;9:234–41.

    CAS  PubMed  Google Scholar 

  84. 84.

    Zo¨llner S. Sampling strategies for rare variant tests in case-control studies. Eur J Hum Genet. 2012;20:1085–91.

    Google Scholar 

  85. 85.

    Wijsman EM. Family-based approaches: design, imputation, analysis, and beyond. BMC Genet. 2016;17(Suppl 2):9.

    PubMed  PubMed Central  Google Scholar 

  86. 86.

    Wijsman E, Amos C. Genetic analysis of simulated oligogenic traits in nuclear families and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol. 1997;14:719–35.

    CAS  PubMed  Google Scholar 

  87. 87.

    Gagnon F, Roslin NM, Lemire M. Successful identification of rare variants using oligogenic segregation analysis as a prioritizing tool for whole-exome sequencing studies. BMC Proc. 2011;5(Suppl 9):S11.

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Simpson CL, Justice CM, Krishnan M, Wojciechowski R, Sung H, Cai J, et al. Old lessons learned anew: family-based methods for detecting genes responsible for quantitative and qualitative traits in the Genetic Analysis Workshop 17 mini-exome sequence data. BMC Proc. 2011;5(Suppl 9):S83.

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Li M, Boehnke M, Abecasis GR. Efficient study designs for test of genetic association using sibship data and unrelated cases and controls. Am J Hum Genet. 2006;78:778–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Saad M, Wijsman EM. Power of family-based association designs to detect rare variants in large pedigrees using imputed genotypes. Genet Epidemiol. 2014;38:1–9.

    PubMed  Google Scholar 

  91. 91.

    Laird NM, Lange C. Family-based designs in the age of large-scale gene-association studies. Nat Rev Genet. 2006;7:385–94.

    CAS  PubMed  Google Scholar 

  92. 92.

    Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X. Family-based association tests for sequence data, and comparisons with population-based association tests. Eur J Hum Genet. 2013;21:1158–62.

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Mathieson I, McVean G. Differential confounding of rare and common variants in spatially structured populations. Nat Genet. 2012;44:243–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Liu Q, Nicolae DL, Chen LS. Marbled inflation from population structure in gene-based association studies with rare variants. Genet Epidemiol. 2013;37:286–92.

    PubMed  Google Scholar 

  95. 95.

    Borecki IB, Province MA. Genetic and genomic discovery using family studies. Circulation. 2008;118:1057–63.

    PubMed  Google Scholar 

  96. 96.

    Haghighi F, Hodge SE. Likelihood formulation of parent-of-origin effects on segregation analysis, including ascertainment. Am J Hum Genet. 2002;70:142–56.

    CAS  PubMed  Google Scholar 

  97. 97.

    Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993;52:506–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Gao G, Allison DB, Hoeschele I. Haplotyping methods for pedigrees. Hum Hered. 2009;67:248–66.

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Schouten MT, Williams CK, Haley CS. The impact of using related individuals for haplotype reconstruction in population studies. Genetics. 2005;171:1321–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Giudicessi JR, Ackerman MJ. Prevalence and potential genetic determinants of sensorineural deafness in KCNQ1 homozygosity and compound heterozygosity. Circ Cardiovasc Genet. 2013;6:193–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Zhong K, Zhu G, Jing X, Hendriks AEJ, Drop SLS, Ikram MA, et al. Genome-wide compound heterozygote analysis highlights alleles associated with adult height in Europeans. Hum Genet. 2017;136:1407–17.

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Dudbridge F, Brown SJ, Ward L, Wilson SG, Walsh JP. How many cases of disease in a pedigree imply familial disease? Ann Hum Genet. 2017;82:109–13.

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Chakravarti A, Turner TN. Revealing rate-limiting steps in complex disease biology: The crucial importance of studying rare, extreme-phenotype families. Bioessays. 2016;38:578–86.

    CAS  PubMed  Google Scholar 

  104. 104.

    Lescai F, Franceschi C. The impact of phenocopy on the genetic analysis of complex traits. PLoS ONE. 2010;5:e11876.

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Steinberg S, Gudmundsdottir S, Sveinbjornsson G, Suvisaari J, Paunio T, Torniainen-Holm M, et al. Truncating mutations in RBM12 are associated with psychosis. Nat Genet. 2017;49:1251–4.

    CAS  PubMed  Google Scholar 

  106. 106.

    Homann OR, Misura K, Lamas E, Sandrock RW, Nelson P, McDonough SI, et al. Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Mol Psychiatry. 2016;21:1690–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Timms AE, Dorschner MO, Wechsler J, Choi KY, Kirkwood R, Girirajan S, et al. Support for the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiplex families. JAMA Psychiatry. 2013;70:582–90.

    CAS  PubMed  Google Scholar 

  108. 108.

    Peltonen L, Palotie A, Lange K. Use of population isolates for mapping complex traits. Nat Rev Genet. 2000;1:182–90.

    CAS  PubMed  Google Scholar 

  109. 109.

    Bouwkamp CG, Kievit AJ, Olgiati S, Breedveld GJ, Coesmans M, Bonifati V, et al. A balanced translocation disrupting BCL2L10 and PNLDC1 segregates with affective psychosis. Am J Med Genet B Neuropsychiatr Genet. 2017;174:214–9.

    CAS  PubMed  Google Scholar 

  110. 110.

    Tansey KE, Rees E, Linden DE, Ripke S, Chambert KD, Moran JL, et al. Common alleles contribute to schizophrenia in CNV carriers. Mol Psychiatry. 2016;21:1085–9.

    CAS  PubMed  Google Scholar 

  111. 111.

    Thomson PA, Duff B, Blackwood DH, Romaniuk L, Watson A, Whalley HC, et al. Balanced translocation linked to psychiatric disorder, glutamate, and cortical structure/function. NPJ Schizophr. 2016;2:16024.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Ryan NM, Lihm J, Kramer M, McCarthy S, Evans KL, Ghiban E, et al. Beyond the translocation: whole genome sequencing analysis of the Scottish t(1;11) family. Orlando, FL: World Congress of Psycahtric Genetics; 2017.

  113. 113.

    Burdick JT, Chen WM, Abecasis GR, Cheung VG. In silico method for inferring genotypes in pedigrees. Nat Genet. 2006;38:1002–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Livne OE, Han L, Alkorta-Aranburu G, Wentworth-Sheilds W, Abney M, Ober C, et al. PRIMAL: fast and accurate pedigree-based imputation from sequence data in a founder population. PLoS Comput Biol. 2015;11:e1004139.

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Meuwissen T, Goddard M. The use of family relationships and linkage disequilibrium to impute phase and missing genotypes in up to whole-genome sequence density genotypic data. Genetics. 2010;185:1441–9.

    PubMed  PubMed Central  Google Scholar 

  116. 116.

    Cheung CY, Thompson EA, Wijsman EM. GIGI: an approach to effective imputation of dense genotypes on large pedigrees. Am J Hum Genet. 2013;92:504–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P. How to track and assess genotyping errors in population genetics studies. Mol Ecol. 2004;13:3261–73.

    CAS  PubMed  Google Scholar 

  118. 118.

    Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res. 1996;24:3189–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Xu J, Turner A, Little J, Bleecker ER, Meyers DA. Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: hint for genotyping error? Hum Genet. 2002;111:573–4.

    PubMed  Google Scholar 

  120. 120.

    Miller CR, Joyce P, Waits LP. Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics. 2002;160:357–66.

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Sobel E, Papp JC, Lange K. Detection and integration of genotyping errors in statistical genetics. Am J Hum Genet. 2002;70:496–508.

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Douglas JA, Skol AD, Boehnke M. Probability of detection of genotyping errors and mutations as inheritance inconsistencies in nuclear-family data. Am J Hum Genet. 2002;70:487–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    McGrath J, Saha S, Welham J, El Saadi O, MacCauley C, Chant D. A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med. 2004;2:13.

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism. 2017;8:13.

    PubMed  PubMed Central  Google Scholar 

  125. 125.

    Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, et al. Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry. 2001;58:361–7.

    CAS  PubMed  Google Scholar 

  126. 126.

    Vassos E, Pedersen CB, Murray RM, Collier DA, Lewis CM. Meta-analysis of the association of urbanicity with schizophrenia. Schizophr Bull. 2012;38:1118–23.

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    van Os J, Kenis G, Rutten BP. The environment and schizophrenia. Nature. 2010;468:203–12.

    Google Scholar 

  128. 128.

    Krabbendam L, van Os J. Schizophrenia and urbanicity: a major environmental influence--conditional on genetic risk. Schizophr Bull. 2005;31:795–9.

    PubMed  Google Scholar 

  129. 129.

    Colodro-Conde L, Couvy-Duchesne B, Whitfield JB, Streit F, Gordon S, Rietschel M, et al. Higher genetic risk for schizophrenia is associated with living in urban and populated areas. bioRxiv 2017.

  130. 130.

    Quillen EE, Voruganti VS, Chittoor G, Rubicz R, Peralta JM, Almeida MA, et al. Evaluation of estimated genetic values and their application to genome-wide investigation of systolic blood pressure. BMC Proc. 2014;8:S66

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160:636–45.

    PubMed  Google Scholar 

  132. 132.

    Glahn DC, Knowles EE, McKay DR, Sprooten E, Raventós H, Blangero J, et al. Arguments for the sake of endophenotypes: examining common misconceptions about the use of endophenotypes in psychiatric genetics. Am J Med Genet B Neuropsychiatr Genet. 2014;165B:122–30.

    PubMed  Google Scholar 

  133. 133.

    Almasy L, Blangero J. Endophenotypes as quantitative risk factors for psychiatric disease: rationale and study design. Am J Med Genet. 2001;105:42–44.

    CAS  PubMed  Google Scholar 

  134. 134.

    Glahn DC, Curran JE, Winkler AM, Carless MA, Kent JW, Charlesworth JC, et al. High dimensional endophenotype ranking in the search for major depression risk genes. Biol Psychiatry. 2012;71:6–14.

    PubMed  Google Scholar 

  135. 135.

    Glahn DC, Williams JT, McKay DR, Knowles EE, Sprooten E, Mathias SR, et al. Discovering schizophrenia endophenotypes in randomly ascertained pedigrees. Biol Psychiatry. 2015;77:75–83.

    PubMed  Google Scholar 

  136. 136.

    Gur RC, Braff DL, Calkins ME, Dobie DJ, Freedman R, Green MF, et al. Neurocognitive performance in family-based and case-control studies of schizophrenia. Schizophr Res. 2015;163:17–23.

    PubMed  PubMed Central  Google Scholar 

  137. 137.

    Leppa VM, Kravitz SN, Martin CL, Andrieux J, Le Caignec C, Martin-Coignard D, et al. Rare inherited and de novo CNVs reveal complex contributions to ASD risk in multiplex families. Am J Hum Genet. 2016;99:540–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Virkud YV, Todd RD, Abbacchi AM, Zhang Y, Constantino JN. Familial aggregation of quantitative autistic traits in multiplex versus simplex autism. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:328–34.

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Oerlemans AM, Hartman CA, de Bruijn YG, Franke B, Buitelaar JK, Rommelse NN. Cognitive impairments are different in single-incidence and multi-incidence ADHD families. J Child Psychol Psychiatry. 2015;56:782–91.

    PubMed  PubMed Central  Google Scholar 

  140. 140.

    Donaldson CK, Stauder JEA, Donkers FCL. Increased sensory processing atypicalities in parents of multiplex ASD families versus typically developing and simplex ASD families. J Autism Dev Disord. 2017;47:535–48.

    PubMed  Google Scholar 

  141. 141.

    Bureau A, Parker MM, Ruczinski I, Taub MA, Marazita ML, Murray JC, et al. Whole exome sequencing of distant relatives in multiplex families implicates rare variants in candidate genes for oral clefts. Genetics. 2014;197:1039–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Georgi B, Craig D, Kember RL, Liu W, Lindquist I, Nasser S, et al. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate. PLoS Genet. 2014;10:e1004229.

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Hou L, Faraci G, Chen DT, Kassem L, Schulze TG, Shugart YY, et al. Amish revisited: next-generation sequencing studies of psychiatric disorders among the Plain people. Trends Genet. 2013;29:412–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    McCarthy NS, Melton PE, Ward SV, Allan SM, Dragovic M, Clark ML, et al. Exome array analysis suggests an increased variant burden in families with schizophrenia. Schizophr Res. 2017;185:9–16.

    PubMed  Google Scholar 

  145. 145.

    Carmiol N, Peralta JM, Almasy L, Contreras J, Pacheco A, Escamilla MA, et al. Shared genetic factors influence risk for bipolar disorder and alcohol use disorders. Eur Psychiatry. 2014;29:282–7.

    CAS  PubMed  Google Scholar 

  146. 146.

    Gur R, Nimgaonkar V, Almasy L, Calkins M, Ragland J, Pogue-Geile M, et al. Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia. Am J Psychiatry. 2007;164:813–9.

    PubMed  Google Scholar 

  147. 147.

    Whalley HC, Sussmann JE, Chakirova G, Mukerjee P, Peel A, McKirdy J, et al. The neural basis of familial risk and temperamental variation in individuals at high risk of bipolar disorder. Biol Psychiatry. 2011;70:343–9.

    PubMed  Google Scholar 

  148. 148.

    Christoforou A, McGhee KA, Morris SW, Thomson PA, Anderson S, McLean A, et al. Convergence of linkage, association and GWAS findings for a candidate region for bipolar disorder and schizophrenia on chromosome 4p. Mol Psychiatry. 2011;16:240–2.

    CAS  PubMed  Google Scholar 

  149. 149.

    Auer PL, Reiner AP, Wang G, Kang HM, Abecasis GR, Altshuler D, et al. Guidelines for large-scale sequence-based complex trait association studies: lessons learned from the NHLBI exome sequencing project. Am J Hum Genet. 2016;99:791–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Makinen VP, Parkkonen M, Wessman M, Groop PH, Kanninen T, Kaski K. High-throughput pedigree drawing. Eur J Hum Genet. 2005;13:987–9.

    PubMed  Google Scholar 

  151. 151.

    Hornig T, Gruning B, Kundu K, Houwaart T, Backofen R, Biber K, et al. GRIN3B missense mutation as an inherited risk factor for schizophrenia: whole-exome sequencing in a family with a familiar history of psychotic disorders. Genet Res. 2017;99:e1.

    Google Scholar 

  152. 152.

    John J, Kukshal P, Bhatia T, Chowdari KV, Nimgaonkar VL, Deshpande SN, et al. Possible role of rare variants in trace amine associated receptor 1 in schizophrenia. Schizophr Res. 2017;189:190–5.

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Rao AR, Yourshaw M, Christensen B, Nelson SF, Kerner B. Rare deleterious mutations are associated with disease in bipolar disorder families. Mol Psychiatry. 2017;22:1009–14.

    CAS  PubMed  Google Scholar 

  154. 154.

    Zhang T, Hou L, Chen DT, McMahon FJ, Wang JC, Rice JP. Exome sequencing of a large family identifies potential candidate genes contributing risk to bipolar disorder. Gene. 2017;645:119–23.

    PubMed  PubMed Central  Google Scholar 

  155. 155.

    Egawa J, Hoya S, Watanabe Y, Nunokawa A, Shibuya M, Ikeda M, et al. Rare UNC13B variations and risk of schizophrenia: whole-exome sequencing in a multiplex family and follow-up resequencing and a case-control study. Am J Med Genet B Neuropsychiatr Genet. 2016;171:797–805.

    CAS  PubMed  Google Scholar 

  156. 156.

    Goes FS, Pirooznia M, Parla JS, Kramer M, Ghiban E, Mavruk S, et al. Exome sequencing of familial bipolar disorder. JAMA Psychiatry. 2016;73:590–7.

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Kos MZ, Carless MA, Peralta J, Blackburn A, Almeida M, Roalf D, et al. Exome sequence data from multigenerational families implicate AMPA receptor trafficking in neurocognitive impairment and schizophrenia risk. Schizophr Bull. 2016;42:288–300.

    PubMed  Google Scholar 

  158. 158.

    Subaran RL, Odgerel Z, Swaminathan R, Glatt CE, Weissman MM. Novel variants in ZNF34 and other brain-expressed transcription factors are shared among early-onset MDD relatives. Am J Med Genet B Neuropsychiatr Genet. 2016;171B:333–41.

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Watanabe Y, Nunokawa A, Shibuya M, Ikeda M, Hishimoto A, Kondo K, et al. Rare truncating variations and risk of schizophrenia: whole-exome sequencing in three families with affected siblings and a three-stage follow-up study in a Japanese population. Psychiatry Res. 2016;235:13–18.

    PubMed  Google Scholar 

  160. 160.

    Zhou Z, Hu Z, Zhang L, Hu Z, Liu H, Liu Z, et al. Identification of RELN variation p.Thr3192Ser in a Chinese family with schizophrenia. Sci Rep. 2016;6:24327.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Ament SA, Szelinger S, Glusman G, Ashworth J, Hou L, Akula N, et al. Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci USA. 2015;112:3576–81.

    CAS  PubMed  Google Scholar 

  162. 162.

    Kember RL, Georgi B, Bailey-Wilson JE, Stambolian D, Paul SM, Bucan M. Copy number variants encompassing Mendelian disease genes in a large multigenerational family segregating bipolar disorder. BMC Genet. 2015;16:27.

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Thygesen JH, Zambach SK, Ingason A, Lundin P, Hansen T, Bertalan M, et al. Linkage and whole genome sequencing identify a locus on 6q25-26 for formal thought disorder and implicate MEF2A regulation. Schizophr Res. 2015;169:441–6.

    PubMed  Google Scholar 

  164. 164.

    Strauss KA, Markx S, Georgi B, Paul SM, Jinks RN, Hoshi T, et al. A population-based study of KCNH7 p.Arg394His and bipolar spectrum disorder. Hum Mol Genet. 2014;23:6395–406.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by National Institute of Mental Health grants U01 MH105630 (DCG), U01 MH105634 (REG), U01 MH105632 (JB), R01 MH078143 (DCG), R01 MH083824 (DCG & JB), R01 MH078111 (JB), R01 MH061622 (LA), R01 MH042191 (REG), and R01 MH063480 (VLN). We thank Dr. Steve Hyman for his continued support for psychiatric genetics.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David C. Glahn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glahn, D.C., Nimgaonkar, V.L., Raventós, H. et al. Rediscovering the value of families for psychiatric genetics research. Mol Psychiatry 24, 523–535 (2019). https://doi.org/10.1038/s41380-018-0073-x

Download citation

Further reading

Search

Quick links