Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders

Abstract

In recent years, striking new evidence has demonstrated non-genetic inheritance of acquired traits associated with parental environmental exposures. In particular, this transgenerational modulation of phenotypic traits is of direct relevance to psychiatric disorders, including depression, post-traumatic stress disorder, and other anxiety disorders. Here we review the recent progress in this field, with an emphasis on acquired traits of psychiatric illnesses transmitted epigenetically via the male lineage. We discuss the transgenerational effects of paternal exposure to stress vs. positive stimuli, such as exercise, and discuss their impact on the behavioral, affective and cognitive characteristics of their progeny. Furthermore, we review the recent evidence suggesting that these transgenerational effects are mediated by epigenetic mechanisms, including changes in DNA methylation and small non-coding RNAs in the sperm. We discuss the urgent need for more research exploring transgenerational epigenetic effects in animal models and human populations. These future studies may identify epigenetic mechanisms as potential contributors to the ‘missing heritability’ observed in genome-wide association studies of psychiatric illnesses and other human disorders. This exciting new field of transgenerational epigenomics will facilitate the development of novel strategies to predict, prevent and treat negative epigenetic consequences on offspring health, and psychiatric disorders in particular.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Maher B. Personal genomes: the case of the missing heritability. Nature. 2008;456:18–21.

    CAS  PubMed  Google Scholar 

  2. 2.

    Manolio Ta, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Nadeau JH. Transgenerational genetic effects on phenotypic variation and disease risk. Hum Mol Genet. 2009;18:R202–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Rando OJ, Verstrepen KJ. Timescales of genetic and epigenetic inheritance. Cell. 2007;128:655–68.

    CAS  PubMed  Google Scholar 

  5. 5.

    Hannan AJ. Tandem repeat polymorphisms: modulators of disease susceptibility and candidates for ‘missing heritability’. Trends Genet. 2010;26:59–65.

    CAS  PubMed  Google Scholar 

  6. 6.

    Meloni M. The social brain meets the reactive genome: neuroscience, epigenetics and the new social biology. Front Hum Neurosci. 2014;8:1–12.

    Google Scholar 

  7. 7.

    Kundakovic M, Champagne FA. Early-life experience, epigenetics, and the developing brain. Neuropsychopharmacology. 2015;40:141–53.

    PubMed  Google Scholar 

  8. 8.

    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA. 2005;102:10604–9.

    CAS  PubMed  Google Scholar 

  9. 9.

    Polderman TJC, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47:702–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bohacek J, Gapp K, Saab BJ, Mansuy IM. Transgenerational epigenetic effects on brain functions. Biol Psychiatry. 2013;73:313–20.

    PubMed  Google Scholar 

  12. 12.

    Harper LV. Epigenetic inheritance and the intergenerational transfer of experience. Psychol Bull. 2005;131:340–60.

    PubMed  Google Scholar 

  13. 13.

    Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet. 2011;12:475–86.

    CAS  PubMed  Google Scholar 

  14. 14.

    Gräff J, Mansuy IM. Epigenetic dysregulation in cognitive disorders. Eur J Neurosci. 2009;30:1–8.

    PubMed  Google Scholar 

  15. 15.

    Ptak C, Petronis A. Epigenetic approaches to psychiatric disorders. Dialogues Clin Neurosci. 2010;12:25–35.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007;8:355–67.

    CAS  PubMed  Google Scholar 

  17. 17.

    Fischer A. Epigenetic memory: the Lamarckian brain. EMBO J. 2014;33:945–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Anacker C, O’Donnell KJ, Meaney MJ. Early life adversity and the epigenetic programming of hypothalamic-pituitaryadrenal function. Dialogues Clin Neurosci. 2014;16:321–33.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bohacek J, Mansuy IM. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology. 2013;38:220–36.

    CAS  PubMed  Google Scholar 

  20. 20.

    Crow TJ. ‘The missing genes: what happened to the heritability of psychiatric disorders?'. Mol Psychiatry. 2011;16:362–4.

    CAS  PubMed  Google Scholar 

  21. 21.

    Youngson NA, Whitelaw E. Transgenerational epigenetic effects. Annu Rev Genom Hum Genet. 2008;9:233–57.

    CAS  Google Scholar 

  22. 22.

    Yehuda R, Halligan SL, Bierer LM. Relationship of parental trauma exposure and PTSD to PTSD, depressive and anxiety disorders in offspring. J Psychiatr Res. 2001;35:261–70.

    CAS  PubMed  Google Scholar 

  23. 23.

    Yehuda R, Bierer LM. Transgenerational transmission of cortisol and PTSD risk. Prog Brain Res. 2007;167:121–35.

    Google Scholar 

  24. 24.

    Yehuda R, Daskalakis NP, Lehrner A, Desarnaud F, Bader HN, Makotkine I, et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring. Am J Psychiatry. 2014;171:872–80.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Shields AE, Wise LA, Ruiz-Narvaez EA, Seddighzadeh B, Byun H-M, Cozier YC, et al. Childhood abuse, promoter methylation of leukocyte NR3C1 and the potential modifying effect of emotional support. Epigenomics. 2016;8:1507–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Schick M, Morina N, Klaghofer R, Schnyder U. Müller J. Trauma, mental health, and intergenerational associations in Kosovar Families 11 years after the war. Eur J Psychotraumatol. 2013;4:1–10.

    Google Scholar 

  27. 27.

    Vaage AB, Thomsen PH, Rousseau C, Wentzel-Larsen T, Ta TV, Hauff E. Paternal predictors of the mental health of children of Vietnamese refugees. Child Adolesc Psychiatry Ment Health. 2011;5:2.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Vågerö D, Rajaleid K. Does childhood trauma influence offspring’s birth characteristics? Int J Epidemiol. 2016;46:219–29.

    PubMed Central  Google Scholar 

  29. 29.

    Bowers ME, Yehuda R. Intergenerational transmission of stress in humans. Neuropsychopharmacology. 2016;41:232–44.

    PubMed  Google Scholar 

  30. 30.

    Svanes C, Koplin J, Skulstad SM, Johannessen A, Bertelsen RJ, Benediktsdottir B, et al. Father’s environment before conception and asthma risk in his children: A multi-generation analysis of the Respiratory Health In Northern Europe study. Int J Epidemiol. 2017;46:235–45.

    PubMed  Google Scholar 

  31. 31.

    Stuppia L, Franzago M, Ballerini P, Gatta V, Antonucci I. Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics. 2015;7:120.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Feinberg JI, Bakulski KM, Jaffe AE, Tryggvadottir R, Brown SC, Goldman LR, et al. Paternal sperm DNA methylation associated with early signs of autism risk in an autism-enriched cohort. Int J Epidemiol. 2015;44:1199–210.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Loke YJ, Hannan AJ, Craig JM. The role of epigenetic change in autism spectrum disorders. Front Neurol. 2015;6:1–18.

    Google Scholar 

  34. 34.

    Tang A, Huang Y, Li Z, Wan S, Mou L, Yin G, et al. Analysis of a four generation family reveals the widespread sequence-dependent maintenance of allelic DNA methylation in somatic and germ cells. Sci Rep. 2016;6:19260.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Tang WWC, Dietmann S, Irie N, Leitch HG, Floros VI, Bradshaw CR, et al. A unique gene regulatory network resets the human germline epigenome for development. Cell. 2015;161:1453–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Donkin I, Versteyhe S, Ingerslev LR, Qian K, Mechta M, Nordkap L, et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 2016;23:369–78.

    CAS  PubMed  Google Scholar 

  37. 37.

    Ng S-F, Lin RCY, Laybutt DR, Barres R, Owens Ja, Morris MJ. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature. 2010;467:963–6.

    CAS  PubMed  Google Scholar 

  38. 38.

    Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143:1084–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Chen QQ, Yan M, Cao Z, Li X, Zhang YY, Shi J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2015;7977:1–8.

    Google Scholar 

  40. 40.

    Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC. Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci. 2013;16:42–7.

    CAS  PubMed  Google Scholar 

  41. 41.

    Li C-Q, Luo Y-W, Bi F-F, Cui T-T, Song L, Cao W-Y, et al. Development of anxiety-like behavior via hippocampal IGF-2 signaling in the offspring of parental morphine exposure: effect of enriched environment. Neuropsychopharmacology. 2014;39:1–11.

    Google Scholar 

  42. 42.

    Wimmer ME, Briand LA, Fant B, Guercio LA, Arreola AC, Schmidt HD, et al. Paternal cocaine taking elicits epigenetic remodeling and memory deficits in male progeny. Mol Psychiatry. 2017;22:1641–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK. Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci USA. 2012;109:9143–8.

    CAS  PubMed  Google Scholar 

  44. 44.

    Sampino S, Juszczak GR, Zacchini F, Swiergiel aH, Modlinski Ja, Loi P, et al. Grand-paternal age and the development of autism-like symptoms in mice progeny. Transl Psychiatry. 2014;4:e386.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Milekic MH, Xin Y, O’Donnell A, Kumar KK, Bradley-Moore M, Malaspina D, et al. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Mol Psychiatry. 2015;20:995–1001.

    CAS  PubMed  Google Scholar 

  46. 46.

    Dias BG, Ressler KJ. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci. 2013;17:89–96.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Finegersh A, Homanics GE. Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PLoS ONE. 2014;9:e99078.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Zhang S, Li X, Wang Z, Liu Y, Gao Y, Tan L, et al. Paternal spatial training enhances offspring’s cognitive performance and synaptic plasticity in wild-type but not improve memory deficit in Alzheimer’s mice. Sci Rep. 2017;7:1521.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Saavedra-Rodríguez L, Feig LA. Chronic social instability induces anxiety and defective social interactions across generations. Biol Psychiatry. 2013;73:44–53.

    PubMed  Google Scholar 

  50. 50.

    Franklin TB, Russig H, Weiss IC, Gräff J, Linder N, Michalon A, et al. Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry. 2010;68:408–15.

    PubMed  Google Scholar 

  51. 51.

    Franklin TB, Linder N, Russig H, Thöny B, Mansuy IM. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS One. 2011;6:e21842.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Morgan CP, Bale TL. Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J Neurosci. 2011;31:11748–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Dietz DM, Laplant Q, Watts EL, Hodes GE, Russo SJ, Feng J, et al. Paternal transmission of stress-induced pathologies. Biol Psychiatry. 2011;70:408–14.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Pisu MG, Garau A, Olla P, Biggio F, Utzeri C, Dore R, et al. Altered stress responsiveness and hypothalamic-pituitary-adrenal axis function in male rat offspring of socially isolated parents. J Neurochem. 2013;126:493–502.

    CAS  PubMed  Google Scholar 

  55. 55.

    Petropoulos S, Matthews SG, Szyf M. Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring. Biol Reprod. 2014;90:43.

    PubMed  Google Scholar 

  56. 56.

    Mychasiuk R, Harker A, Ilnytskyy S, Gibb R. Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring. Neuroscience. 2013;241:100–5.

    CAS  PubMed  Google Scholar 

  57. 57.

    Bohacek J, Farinelli M, Mirante O, Steiner G, Gapp K, Coiret G, et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol Psychiatry. 2015;20:621–31.

    CAS  PubMed  Google Scholar 

  58. 58.

    Yeshurun S, Rogers J, Short AK, Renoir T, Pang TY, Hannan AJ. Elevated paternal glucocorticoid exposure modifies memory retention in female offspring. Psychoneuroendocrinology. 2017;83:9–18.

    CAS  PubMed  Google Scholar 

  59. 59.

    Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet. 2012;13:153–62.

    CAS  PubMed  Google Scholar 

  60. 60.

    Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, et al. A survey of small RNAs in human sperm. Hum Reprod. 2011;26:3401–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Garcia-Silva MR, Cabrera-Cabrera F, Güida MC, Cayota A. Hints of tRNA-derived small RNAs role in RNA silencing mechanisms. Genes (Basel). 2012;3:603–14.

    Google Scholar 

  62. 62.

    Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, et al. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res. 2012;22:1609–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet. 2016;17:733–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci. 2013;33:9003–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci. 2015;112:13699–704.

    CAS  PubMed  Google Scholar 

  66. 66.

    Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Short AK, Fennell KA, Perreau VM, Fox A, O’Bryan MK, Kim JH, et al. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl Psychiatry. 2016;6:e837.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Karp NA, Mason J, Beaudet AL, Benjamini Y, Bower L, Braun RE, et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat Commun. 2017;8:15475.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Dezsi G, Ozturk E, Salzberg MR, Morris M, O’Brien TJ, Jones NC. Environmental enrichment imparts disease-modifying and transgenerational effects on genetically-determined epilepsy and anxiety. Neurobiol Dis. 2016;93:129–36.

    PubMed  Google Scholar 

  70. 70.

    Becker JB, Prendergast BJ, Liang JW, Mazure C, Jones D, Clayton J, et al. Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biol Sex Differ. 2016;7:34.

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Bale TL, Epperson CN. Sex differences and stress across the lifespan. Nat Neurosci. 2015;18:1413–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Tsuda MC, Yamaguchi N, Nakata M, Ogawa S. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation. Front Neurosci. 2014;8:1–9.

    Google Scholar 

  73. 73.

    Pang TY, Short AK, Bredy TW, Hannan AJ. Transgenerational paternal transmission of acquired traits: stress-induced modification of the sperm regulatory transcriptome and offspring phenotypes. Curr Opin Behav Sci. 2017;14:140–7.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Mikkonen J, Moustgaard H, Remes H, Martikainen P. Intergenerational transmission of depressive symptoms - the role of gender, socioeconomic circumstances, and the accumulation of parental symptoms. J Affect Disord. 2016;204:74–82.

    PubMed  Google Scholar 

  75. 75.

    Bale TL, Epperson CN. Sex as a biological variable: who, what, when, why and how. Neuropsychopharmacology. 2016;42:386–96.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Morgan CP, Bale TL. Sex differences in microRNA regulation of gene expression: no smoke, just miRs. Biol Sex Differ. 2012;3:22.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Bale TL. Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci. 2015;16:332–44.

    CAS  PubMed  Google Scholar 

  78. 78.

    Renoir T, Pang TY, Hannan AJ. Effects of environmental manipulations in genetically targeted animal models of affective disorders. Neurobiol Dis. 2013;57:12–27.

    CAS  PubMed  Google Scholar 

  79. 79.

    Pang TYC, Hannan AJ. Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology. 2013;64:515–28.

    CAS  PubMed  Google Scholar 

  80. 80.

    Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006;7:697–709.

    CAS  PubMed  Google Scholar 

  81. 81.

    Mitchell C, Schneper LM, Notterman DA. DNA methylation, early life environment, and health outcomes. Pediatr Res. 2016;79:212–9.

    CAS  PubMed  Google Scholar 

  82. 82.

    Denham J, O’Brien BJ, Harvey JT, Charchar FJ. Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. Epigenomics. 2015;7:717–731.

    CAS  PubMed  Google Scholar 

  83. 83.

    McPherson NO, Owens JA, Fullston T, Lane M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. Am J Physiol Endocrinol Metab. 2015;308:E805–21.

    PubMed  Google Scholar 

  84. 84.

    Murashov AK, Pak ES, Koury M, Ajmera A, Jeyakumar M, Parker M, et al. Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J. 2016;30:775–84.

    CAS  PubMed  Google Scholar 

  85. 85.

    Short AK, Yeshurun S, Powell R, Perreau VM, Fox A, Kim JH, et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modi fi cation of male offspring conditioned fear and anxiety. Transl Psychiatry. 2017;7:e1114–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Gapp K, Bohacek J, Grossmann J, Brunner AM, Manuella F, Nanni P, et al. Potential of environmental enrichment to prevent transgenerational effects of paternal trauma. Neuropsychopharmacology. 2016;41:2749–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Yeshurun S, Short AK, Bredy TW, Pang TY, Hannan AJ. Paternal environmental enrichment transgenerationally alters affective behavioral and neuroendocrine phenotypes. Psychoneuroendocrinology. 2017;77:225–35.

    CAS  PubMed  Google Scholar 

  88. 88.

    Hannan AJ. Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol. 2014;40:13–25.

    CAS  PubMed  Google Scholar 

  89. 89.

    Clemenson GD, Stark CEL. Virtual environmental enrichment through video games improves hippocampal-associated memory. J Neurosci. 2015;35:16116–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Lampit A, Hallock H, Valenzuela M. Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 2014;11:e1001756.

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Toyokawa S, Uddin M, Koenen KC, Galea S. How does the social environment ‘get into the mind’? Epigenetics at the intersection of social and psychiatric epidemiology. Soc Sci Med. 2012;74:67–74.

    PubMed  Google Scholar 

  92. 92.

    McOmish CE, Burrows EL, Hannan AJ. Identifying novel interventional strategies for psychiatric disorders: integrating genomics, ‘enviromics’ and gene-environment interactions in valid preclinical models. Br J Pharmacol. 2014;171:4719–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    McOmish CE, Hannan AJ. Enviromimetics: exploring gene environment interactions to identify therapeutic targets for brain disorders. Expert Opin Ther Targets. 2007;11:899–913.

    CAS  PubMed  Google Scholar 

  94. 94.

    Jia H, Morris CD, Williams RM, Loring JF, Thomas EA. HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci. 2015;112:E56–64.

    CAS  PubMed  Google Scholar 

  95. 95.

    Thomas EA. DNA methylation in Huntington’s disease: Implications for transgenerational effects. Neurosci Lett. 2016;625:34–9.

    CAS  PubMed  Google Scholar 

  96. 96.

    Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: Mental and physical activity as modulators of brain disorders. Prog Neurobiol. 2009;89:369–82.

    PubMed  Google Scholar 

  97. 97.

    Alboni S, van Dijk RM, Poggini S, Milior G, Perrotta M, Drenth T, et al. Fluoxetine effects on molecular, cellular and behavioral endophenotypes of depression are driven by the living environment. Mol Psychiatry. 2017;22:1–10.

    Google Scholar 

  98. 98.

    Chiarotti F, Viglione A, Giuliani A, Branchi I. Citalopram amplifies the influence of living conditions on mood in depressed patients enrolled in the STAR*D study. Transl Psychiatry. 2017;7:e1066.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Issler O, Haramati S, Paul ED, Maeno H, Navon I, Zwang R, et al. MicroRNA 135 is essential for chronic stress resiliency, antidepressant efficacy, and intact serotonergic activity. Neuron. 2014;83:344–60.

    CAS  PubMed  Google Scholar 

  100. 100.

    Silva EJR, Queiróz DBC, Honda L, Avellar MCW. Glucocorticoid receptor in the rat epididymis: Expression, cellular distribution and regulation by steroid hormones. Mol Cell Endocrinol. 2010;325:64–77.

    CAS  PubMed  Google Scholar 

  101. 101.

    Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, et al. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143:635–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Nixon B, Stanger SJ, Mihalas BP, Reilly JN, Anderson AL, Tyagi S, et al. The microRNA signature of mouse spermatozoa is substantially modified during epididymal maturation. Biol Reprod. 2015;93:91.

    PubMed  Google Scholar 

  103. 103.

    Pusic KM, Pusic AD, Kraig RP. Environmental enrichment stimulates immune cell secretion of exosomes that promote CNS myelination and may regulate inflammation. Cell Mol Neurobiol. 2016;36:313–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA. 2010;16:673–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 2014;33:1–20.

    Google Scholar 

  106. 106.

    Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6:127.

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014;42:7290–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351:391–6.

    CAS  PubMed  Google Scholar 

  109. 109.

    Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Boffelli D, Mote P, et al. 5’ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genome. 2013;14:298.

    CAS  Google Scholar 

  110. 110.

    de Castro Barbosa T, Ingerslev LR, Alm PS, Versteyhe S, Massart J, Rasmussen M, et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab. 2016;5:184–97.

    PubMed  Google Scholar 

  111. 111.

    Cropley JE, Eaton SA, Aiken A, Young PE, Giannoulatou E, Ho JWK, et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol Metab. 2016;5:699–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis. 2003;35:88–93.

    CAS  PubMed  Google Scholar 

  113. 113.

    Jenkins TG, Carrell DT. The sperm epigenome and potential implications for the developing embryo. Reproduction. 2012;143:727–34.

    CAS  PubMed  Google Scholar 

  114. 114.

    Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 2014;10:e1004458.

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Eaton SA, Jayasooriah N, Buckland ME, Martin DI, Cropley JE, Suter CM. Roll over Weismann: extracellular vesicles in the transgenerational transmission of environmental effects. Epigenomics. 2015;7:1165–71.

    CAS  PubMed  Google Scholar 

  116. 116.

    Zhang Y, Zhang Y, Shi J, Zhang H, Cao Z, Gao X, et al. Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. J Mol Cell Biol. 2014;6:172–4.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dana Most, as well as Terence Pang, Annabel Short, Shiraz Tyebji and other members of the Hannan Laboratory for comments and discussions during the preparation of the manuscript. AJH is an NHMRC Principal Research Fellow and research findings which have informed this article were supported by NHMRC Project Grants to AJH and the DHB Foundation, Equity Trustees (AJH).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hannan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeshurun, S., Hannan, A.J. Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders. Mol Psychiatry 24, 536–548 (2019). https://doi.org/10.1038/s41380-018-0039-z

Download citation

Further reading