Abstract
Light is a union of electric and magnetic fields, and nowhere is the complex relationship between these fields more evident than in the near fields of nanophotonic structures. There, complicated electric and magnetic fields varying over subwavelength scales are generally present, which results in photonic phenomena such as extraordinary optical momentum, superchiral fields, and a complex spatial evolution of optical singularities. An understanding of such phenomena requires nanoscale measurements of the complete optical field vector. Although the sensitivity of nearfield scanning optical microscopy to the complete electromagnetic field was recently demonstrated, a separation of different components required a priori knowledge of the sample. Here, we introduce a robust algorithm that can disentangle all six electric and magnetic field components from a single nearfield measurement without any numerical modeling of the structure. As examples, we unravel the fields of two prototypical nanophotonic structures: a photonic crystal waveguide and a plasmonic nanowire. These results pave the way for new studies of complex photonic phenomena at the nanoscale and for the design of structures that optimize their optical behavior.
The advent of metamaterials and structures with a large response to the optical magnetic field ushered in a new age of nearfield microscopy, where the ability to measure only electric near fields is no longer sufficient. Many nanoscopic structures, such as split ring resonators^{1,2}, dielectric Mie scatterers^{3,4,5,6}, and even simple plasmonic holes^{7,8}, have an optical response that depends on the full electromagnetic field. Likewise, measurements of many nanoscale photonic phenomena, such as superchiral fields^{9,10} or extraordinary spin and orbital angular momentum^{11,12,13}, require access to both the electric E and magnetic H fields.
Motivated by this demand, there have been a number of efforts to extend the capability of nearfield scanning optical microscopes (NSOMs) beyond the traditional measurements of E^{14}. Proofofconcept measurements of H at the nanoscale have relied on specially designed nearfield probes^{15,16}; however, these are difficult to fabricate and tend to measure only one component of H. Recent strategies have therefore focused on measurements with traditional aperture probes^{17,18}, which demonstrate that even circular apertures are simultaneously sensitive to the four inplane components \(E_{x,y}\) and \(H_{x,y}\) ^{19}.
However, a crucial challenge remains. Although a polarizationresolved NSOM measurement (see Supplementary Note 1) contains information from the four inplane components, it is encoded into only two complex signals L_{x} and L_{x}, as shown in Fig. 1. To date, unraveling these measurements to extract the individual components of the electric and magnetic fields has not been possible without the use of additional information coming from detailed simulations of the structure being measured^{20}, on farfield optical beams^{21} or a symmetry plane where one component is identically zero^{22}. At best, numerical simulations can be used to determine the spatial evolution of \(\left {\mathbf{E}} \right^2\) and \(\left {\mathbf{H}} \right^2\) near nanophotonic structures but not separate electromagnetic components or their phases^{23}. Here, we show how to simultaneously extract \(E_x\), \(E_y\), \(H_x\), and \(H_y\) from a single twochannel NSOM measurement with no a priori knowledge of the nanophotonic structures being measured. By inserting these fields into Maxwell’s equations, we can obtain the two outofplane components \(E_z\) and \(H_z\) and thus achieve a full vectorial measurement of the electromagnetic nearfield. The separation algorithm is robust to noise and realistic measurement conditions, as we show from exemplary NSOM experiments on both photonic crystal waveguides (PhCWs) and plasmonic nanowires.
At the heart of nearfield microscopy lies the process by which the nearfield probe images the light fields above a structure. For example, in the field distributions in Fig. 1b, which were measured 280 nm above a PhCW (Supplementary Notes 1 and 2), a representative height where the electric and magnetic field distributions contain subwavelength features and are expected to differ^{19,24}. These images are produced as the aperture probe, which acts as an effective spatial filter, merges all four inplane components of the sample’s nearfield. When this light field is highly structured with feature sizes smaller than the probe aperture, this process becomes increasingly complex, and it is less obvious exactly how efficiently and with what phase \(E_x\), \(E_y\), \(H_x\), and \(H_y\) contribute to the measured signals \(L_y\) and \(L_x\). In other words, calculating the transfer function of a nearfield probe, which propagates the fields from the sample to a detector, has not been possible.
However, it is possible to calculate the fields that are radiated through the probe by a point dipole at position r_{0} of a hypothetical detector (Fig. 2a) with current density \({\mathbf{j}}_{{\rm{det}}}{\mathrm{\delta }}({\mathbf{r}}  {\mathbf{r}}_0)\). These fields, which we label \({\mathbf{E}}_i^r\) and \({\mathbf{H}}_i^r\), where i = x,y indicates the orientation of j_{det} (Fig. 2b, middle column, for the dipole in the x direction), have been extensively measured and resemble those below a hole in a metal film^{14,25}; hereafter, we take our tip to be ideally symmetric to ensure equal sensitivity to the x and y components of the electromagnetic field. Via the optical reciprocity theorem (ORT), we can use these probe fields to relate the sample fields \({\mathbf{E}}^e\) and \({\mathbf{H}}^e\) (Fig. 2b, left column) to dipoles at our detectors and, consequently, our measured signals (Fig. 2b, right column)^{19,26,27}. In other words, in this approach, \({\mathbf{E}}_i^r\) and \({\mathbf{H}}_i^r\) can be considered the spatial filters that exactly define how efficiently and with which phase different sample field components are detected. Each independent dipole orientation x or y is associated with all four inplane components of the probe field, which explains why each detection channel typically contains information of all inplane components of the sample fields. Using a specific sensing configuration^{28} or material composition^{16}, it is possible to design probes that primarily detect \({\mathbf{E}}^e\) or \({\mathbf{H}}^e\) of specific near fields. However, such probes preclude complete electromagnetic measurements, so we consider aperture probes that are similarly sensitive to \({\mathbf{E}}^e\) and \({\mathbf{H}}^e\) in this work.
The image formation via the ORT can be expressed as (see Supplementary Note 4 for derivation)
where S is a surface between the probe and the sample, which is 10 nm below the probe in this case; \({\mathbf{R}}_{{\rm{tip}}} = \left( {x_{{\rm{tip}}},y_{{\rm{tip}}}} \right)\) is the position of the tip above this plane; \({\mathbf{R}} = \left( {x,y} \right)\) are the coordinates of the fields on S; and the integral is taken over all R. Subscript i refers to the x or y orientation of the reciprocal dipole and not to a component of the fields. The dot product with \({\hat{\mathbf z}}\) shows that the measured image only depends on the inplane field components. This process of image formation is shown in Fig. 2b, where we use the calculated probe and sample fields to predict the measured signals (see ref. ^{19} for details on the calculations). In fact, we observe an excellent agreement between our predictions (right column, Fig. 2b) and the measurements (Fig. 1b) at 280 nm above the PhCW, which validates this approach and the symmetry of our probes.
When we want to retrieve the sample fields, instead of studying the image formation, we face two challenges: first, we require two additional equations to match the number of unknowns; second, we must be able to invert Eq. 1 (Supplementary Note 3). To address the first challenge, we recognize that the electromagnetic field at and near the sample plane can be decomposed into a superposition of different plane waves, each of which is represented by a total wavevector \({\mathbf{k}} = k_z{\hat{\mathbf z}} + \varkappa {\hat{\mathbf \kappa }}, {\rm{where}}{\,} \varkappa=\kappa=(k_x, k_y)\)^{28}. Here, \(k_z\) is the outofplane component of the wavevector, and \({\mathbf{\varkappa }}\) is the inplane component, as shown in Fig. 2a. We can write each plane wave in the Cartesian basis (E_{x}, E_{y}, E_{z}) or in terms of its s and pfield components (\(E_{s + }\), \(E_{s  }\), \(E_{p + }\), \(E_{p  }\)), which enables us to identify the upward (real (k_{z}) > 0, subscript +) or downward (real (k_{z}) < 0, subscript −) propagating waves. In principle, the full field between the sample and the probe is a combination of both upward and downward propagating fields, where the latter arise due to the interaction of the probe tip with the sample. However, this interaction is negligible if the probe and sample do not have a joint resonance^{29}, as is indeed the case for our normal aperture probe, which has a broad spectral response^{7,28}. Therefore, we can take the field above the sample surface to be purely upward propagating (i.e., there is no backscattering, so \(E_{p  } = 0\)), which implies that we must only consider two components of the electric field and four components of the total field: E_{s}, E_{p}, H_{s}, and H_{p}, where all s and p components are upward propagating (i.e., p + ). Finally, Maxwell’s equations straightforwardly relate the electric and magnetic field components of these transverse plane waves (see Supplementary Note 5 for the derivation and conversion between the different bases)
where Z_{0} is the impedance of free space. Considering Eq. 1, we have reduced our problem to two unknowns (\(E_s^e\) and \(E_p^e\)) and two equations, one each for L_{x} and L_{y}. In terms of the Fourier components, we can rewrite Eq. 1 as
where tensor \({\mathrm{N}}\) is essentially the transfer matrix that maps the sample electric fields expressed in their polarization components to the detection channels associated with the \(x\) and \(y\)directions. Different components of \({\rm{N}}\) are related to the Cartesian components of \({\mathbf{E}}_i^r\) and \({\mathbf{H}}_i^r\) as follows
where \(\varphi\) is the angle between \({\mathbf{\kappa }}\) and the xaxis (Fig. 2a). We show the image formation process in terms of these plane wave components in the top row of Fig. 2c, which corresponds to the real space plots in Fig. 2b, where \(N_{x,s}\left( {\mathbf{\kappa }} \right)\) and \(N_{x,p}\left( {\mathbf{\kappa }} \right)\) are plotted in the middle column. These N maps clearly show which wavevector components contribute the most to the detected image.
Then, unraveling the nearfield measurements is simply a matter of inverting N to obtain
which has a unique solution if \({\rm{det}}\left( {\rm{N}} \right) \ne 0\) for all \({\mathbf{\kappa }}\), as is indeed the case for our probes. Therefore, we can deconvolve a nearfield measurement simply by following the steps illustrated in the bottom row of Fig. 2c. First, the measurements are Fourier transformed in the xyplane to generate \(L_{x,y}\left( {\mathbf{\kappa }} \right)\), which are multiplied by \({\rm{N}}^{  1}\left( {\mathbf{\kappa }} \right)\) to obtain \(E_{s,p}^e\left( {\mathbf{\kappa }} \right)\) according to Eq. 5. Then, these fields are transformed back into the Cartesian basis (Supplementary Note 5) and inverseFouriertransformed into the real space to arrive at the deconvolved sample fields \(E_{x,y}^e\left( {\mathbf{R}} \right)\) and \(H_{x,y}^e\left( {\mathbf{R}} \right)\). Finally, following the example of Olmon et al.^{22}, we use Maxwell’s equations to extract the 2D maps of the outofplane electric and magnetic field components, \(E_z^e({\mathbf{R}})\) and \(H_z^e({\mathbf{R}})\), according to \(E_z = iZ_0k_0\left( {\frac{{\partial H_x}}{{\partial x}}  \frac{{\partial H_x}}{{\partial y}}} \right)\) and \(H_z =  \frac{{ik_0}}{{Z_0}}\left( {\frac{{\partial E_y}}{{\partial x}}  \frac{{\partial E_x}}{{\partial y}}} \right)\). Because the same probe can be used for multiple measurements and \({\mathrm{N}}\left( {\mathbf{\kappa }} \right)\) is similar for probes with different aperture sizes (Supplementary Figure S13), \({\rm{N}}^{  1}\left( {\mathbf{\kappa }} \right)\) must only be calculated once and can be used in many experiments.
The inversion of N (in Eq. 5) makes our deconvolution process sensitive to largewavevector signals, although the image formation process is not (bottom and top rows of Fig. 2c, respectively). Since the experimental fields (left column, Fig. 2c) do not contain a signal at these large wavevectors, the measurement noise typically dominates there. In principle, this sensitivity to large wavevectors limits our retrieval algorithm, but it does not greatly affect its performance in practice. As we discuss below (see Fig. 4), we can simply limit the largest wavevector that we consider to the wavevector at which we still expect to find signal from the sample.
Here, we apply our algorithm to the PhCW fields shown in Fig. 1b and limit ourselves to the smallest allowable wavevector range \(\varkappa \le 3k_0\), where k_{0} is the freespace wavenumber of the light to test our retrieval procedure in the lowest resolution limit. As we discuss below and in more detail in Supplementary Note 7, the maximum allowable wavevector can by increased to \(\varkappa _{{\mathrm{max}}} = 9k_0\). The amplitudes of the separated field components are shown in Fig. 3 along with the theoretically calculated mode profiles. Line cuts, taken at the positions of the dashed lines are also shown, which demonstrate the excellent agreement when comparing the experimental (blue) and theoretical (gray) curves for all six electromagnetic field components. In fact, the only component for which we observe significant deviation between the predicted and measured field amplitude is E_{z}. We attribute this difference to the small amplitude of this component, which makes it more susceptible to errors that arise from imperfect experimental conditions, which can cause, e.g., polarization mixing. In principle, even these small errors can be improved by calculating the transfer function for the exact probe used, including minor fabrication imperfections, and not the idealized, symmetric probe here. We also observe strikingly good agreement between the calculated and retrieved phase profiles (Supplementary Figure S14). In other words, we can successfully recover the general shape of each field component and even resolve the fine features in the amplitude and phase of these inplane fields all from a single measurement.
Our approach is not limited to dielectric structures but can be extended to nanoplasmonics. As an example, we consider a plasmonic nanowire, whose electric and magnetic nearfield distributions are known to have different and nontrivial spatial dependencies^{30}. Using our protocol, we resolve the different field components above the nanowire (see Supplementary Note 6 for details and images of the separated fields). We again observe good agreement between theoretical and measured fields, and similar to the dielectric samples, clear differences in the retrieved electric and magnetic fields from different samples are revealed (Supplementary Figure S10).
The ability of our algorithm to retrieve optical fields from measurements of a PhCW and a plasmonic nanowire already hints at its robustness to noise. To further explore the effect of measurement noise, we artificially add white noise to a perfect “measurement” (i.e., theoretically calculated fields with a noise level < 10^{−3}) in increments until we reach a signaltonoise ratio of unity in L_{x,y}. Then, we calculate the normalized error between the ideal and the retrieved optical fields (see Methods Section), which is shown in Fig. 4. More importantly, for all noise levels, we observe that the setting \(\varkappa _{\max } = 2k_0\) results in a poor field retrieval because this low limit effectively filters large portions of the input signal (Supplementary Figure S12 for the corresponding retrieved field maps and Supplementary Section S7 for additional discussion). However, up to \(\varkappa _{{\rm{max}}} = 5k_0\), we find nearperfect deconvolution even in cases where the noise is as large as the signal.
Finally, we note that while decreasing the probe aperture size results in a decrease in signal and a corresponding increase in resolution, it has little effect on our algorithm (Supplementary Figure S13); although higher wavevectors appear in \({\rm{N}}\left( {\mathbf{\kappa }} \right)\) for small probe diameters, \({\rm{N}}\left( {\mathbf{\kappa }} \right)\) remains nearly identical at low \({\mathbf{\varkappa }}\). Since the algorithm is robust even when the noise level is comparable to the signal (c.f. Figure 4), even measurements with such lowthroughput probes can be deconvolved into their constituent components.
The capability to map both the electric and magnetic nearfield components is important for the study and development of nanophotonic structures, particularly if the strategy is simple and robust. Our approach can be used to measure the full electric and magnetic fields near dielectric and plasmonic structures, which are increasingly necessary in a research landscape of nanoscopic structures with different electric and magnetic responses. Moreover, because the deconvolution of a full field takes only seconds when \({\rm{N}}^{  1}\left( {\mathbf{\kappa }} \right)\) is known (Eqs. 4 and 5), our algorithm can be applied in real time. As a demonstration, we have presented the full, complex electromagnetic nearfield of two nanophotonic waveguides, but we note that our approach can also be applied to other systems such as nanoantennas and cavities. For the latter case, special care must be taken with highquality factor resonators \(Q \, > \, 1000\), where the interactions between the nearfield probe and the photonic mode cannot be neglected and in fact can provide an independent measure of the magnetic field^{17,31}. Measurements of nanoscale E and H have the potential to drive progress in fields such as chiral quantum optics^{32,33}, plasmonics^{34}, and metasurfaces^{35}, where the lightmatter interactions and device performance depend on the exact form of vector near fields, often in the presence of unavoidable fabrication imperfections. A further intriguing possibility is the combination of our method with measurements of the emission of a quantum emitter placed on the probe, which map out the local density of optical states^{36,37} and are therefore important to quantum optical applications.
Methods
Robustness to noise
To quantify the robustness to noise of our algorithm, we compare the calculated fields to the fields retrieved from a computergenerated field map, which is obtained by applying the reciprocity theorem to the calculated fields. To this calculated mapping (such as that in Fig. 2b), we add a controlled amount of white noise. The mean amplitude of that noise relative to the maximum amplitude of the signal is shown on the yaxis of Fig. 4. Next, we apply our algorithm to these noisy calculated mappings and compare the retrieved fields to the calculated fields to obtain the normalized error \(\Delta = \mathop {\sum}\limits_{E_{x,y}H_{x,y}} {{\int} {\left {\left {F_{{\rm{retr}}}} \right  \left {F_{{\rm{in}}}} \right} \right^2{\rm{dr}}} } /\mathop {\sum}\limits_{E_{x,y}H_{x,y}} {{\int} {\left {F_{{\rm{in}}}} \right^2{\rm{dr}}} }\), where F indicates the electric and magnetic field components of the retrieved (retr.) and input (in) fields.
SP coordinate transformations
The orientation of the spbasis vectors is constructed from the inplane wavevector according to
where \(k_z = \sqrt {k_0^2  \varkappa ^2}\). In our experiment, there are only upwardpropagating fields, and we use the following equations to convert the fields in the \(sp\)basis to those in a Cartesian basis,
These equations are derived in Supplementary Note 5 and can be straightforwardly inverted to find the transformation from a Cartesian to an spbasis.
References
Sersic, I. et al. Electric and magnetic dipole coupling in nearinfrared splitring metamaterial arrays. Phys. Rev. Lett. 103, 213902 (2009).
Ryabov, A. and Baum, P. Electron microscopy of electromagnetic waveforms. Science. 353, 374–377 (2016).
Yen, T. J. et al. Terahertz magnetic response from artificial. Mater. Sci. 303, 1494–1496 (2004).
Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).
Zywietz, U. et al. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 5, 3402 (2014).
Geffrin, J. M. et al. Magnetic and electric coherence in forward and backscattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012).
Rotenberg, N. et al. Tracking nanoscale electric and magnetic singularities through threedimensional space. Optica 2, 540–546 (2015).
García de Abajo, F. J. Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007).
Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).
Bliokh, K. Y. & Nori, F. Characterizing optical chirality. Phys. Rev. A 83, 021803 (2011).
Bliokh, K. Y., Bekshaev, A. Y., and Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014).
Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).
Bliokh, K. Y. et al. Spinorbit interactions of light. Nat. Photonics 9, 796–808 (2015).
Betzig, E. & Chichester, R. J. Single molecules observed by nearfield scanning optical microscopy. Science 262, 1422–1425 (1993).
Burresi, M. et al. Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009).
Denkova, D. et al. Mapping magnetic nearfield distributions of plasmonic nanoantennas. ACS Nano 7, 3168–3176 (2013).
Caselli, N. et al. Deepsubwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna. Sci. Rep. 5, 9606 (2015).
Vignolini, S. et al. Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett. 105, 123902 (2010).
le Feber, B. et al. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics 8, 43–46 (2014).
Rotenberg, N. et al. Plasmon scattering from single subwavelength holes. Phys. Rev. Lett. 108, 127402 (2012).
Bauer, T. et al. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nat. Photonics 8, 23–27 (2014).
Olmon, R. L. et al. Determination of electricfield, magneticfield, and electriccurrent distributions of infrared optical antennas: a nearfield optical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010).
Grosjean, T. et al. Full vectorial imaging of electromagnetic light at subwavelength scale. Opt. Express 18, 5809–5824 (2010).
Engelen, R. J. P. et al. Subwavelength structure of the evanescent field of an optical bloch wave. Phys. Rev. Lett. 102, 023902 (2009).
Veerman, J. A. et al. Single molecule mapping of the optical field distribution of probes for nearfield microscopy. J. Microsc. 194, 477–482 (1999).
de Fornel, F. et al. Analysis of image formation with a photon scanning tunnelingmicroscope. J. Opt. Soc. Am. A 13, 35–45 (1996).
Greffet, J.J. & Carminati, R. Image formation in nearfield optics. Prog. Surf. Sci. 56, 133–237 (1997).
Schmidt, S. et al. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy. Opt. Express 24, 4128–4142 (2016).
Esteban, R. et al. Direct nearfield optical imaging of higher order plasmonic resonances. Nano Lett. 8, 3155–3159 (2008).
Kabakova, I. V. et al. Imaging of electric and magnetic fields near plasmonic nanowires. Sci. Rep. 6, 22665 (2016).
Burresi, M. et al. Magnetic lightmatter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105, 123901 (2010).
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473 (2017).
Wang, M., et al. Magnetic spinorbit interaction of light. Light Sci. Appl. 7, 24 (2018).
Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).
Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking lightbased technology. Science 348, 516–521 (2015).
Kildishev, A. V., Boltasseva, A., and Shalaev, V. M. Planar Photonics with Metasurfaces. Science 339, 6125 (2013).
Aigouy, L. et al. Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale. Phys. Rev. Lett. 113, 076101 (2014).
Acknowledgements
The authors thank Irina Kabakova and Anouk de Hoogh for their help with the experiments and fabrication. The authors acknowledge the support from the European Research Council (ERC Advanced Grant 340438CONSTANS). This work is also part of the research program Rubicon with project number 680501513, which is partly financed by the Netherlands Organization for Scientific Research (NWO). Finally, part of this work is also funded by the Natural Sciences and Engineering Research Council of Canada.
Author information
Authors and Affiliations
Contributions
N.R., L.K., and J.S. conceived the study. J.E.S., N.R., B.l.F., and L.K. developed the deconvolution algorithm. B.l.F performed the numerical analyses and simulations. N.R., B.l.F, M.W., and L.K. performed the experiments. J.E.S., N.R., B.l.F., and L.K. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
le Feber, B., Sipe, J.E., Wulf, M. et al. A full vectorial mapping of nanophotonic light fields. Light Sci Appl 8, 28 (2019). https://doi.org/10.1038/s4137701901243
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s4137701901243
This article is cited by

Nearfield transmission matrix microscopy for mapping highorder eigenmodes of subwavelength nanostructures
Nature Communications (2020)