Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LYMPHOMA

Genomic features reveal potential benefit of adding anti-PD-1 immunotherapy to treat non-upper aerodigestive tract natural killer/T-cell lymphoma

Abstract

Natural killer/T-cell lymphoma (NKTCL) is a highly heterogeneous disease with a poor prognosis. However, the genomic characteristics and proper treatment strategies for non-upper aerodigestive tract NKTCL (NUAT-NKTCL), a rare subtype of NKTCL, remain largely unexplored. In this study, 1589 patients newly diagnosed with NKTCL at 14 hospitals were assessed, 196 (12.3%) of whom had NUAT-NKTCL with adverse clinical characteristics and an inferior prognosis. By using whole-genome sequencing (WGS) and whole-exome sequencing (WES) data, we found strikingly different mutation profiles between upper aerodigestive tract (UAT)- and NUAT-NKTCL patients, with the latter group exhibiting significantly higher genomic instability. In the NUAT-NKTCL cohort, 128 patients received frontline P-GEMOX chemotherapy, 37 of whom also received anti-PD-1 immunotherapy. The application of anti-PD-1 significantly improved progression-free survival (3-year PFS rate 53.9% versus 17.0%, P = 0.009) and overall survival (3-year OS rate 63.7% versus 29.2%, P = 0.01) in the matched NUAT-NKTCL cohort. WES revealed frequent mutations involving immune regulation and genomic instability in immunochemotherapy responders. Our study showed distinct clinical characteristics and mutational profiles in NUAT-NKTCL compared with UAT patients and suggested adding anti-PD-1 immunotherapy in front-line treatment of NUAT-NKTCL. Further studies are needed to validate the efficacy and related biomarkers for immunochemotherapy proposed in this study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kaplan–Meier survival curves in patients with NKTCL stratified by disease type.
Fig. 2: Characterization of somatic mutations and tumor mutation burden in NKTCL.
Fig. 3: Mutational landscape of UAT- and NUAT-NKTCL.
Fig. 4: The copy number variation landscape in NKTCL.
Fig. 5: Survival analysis in patients with NUAT-NKTCL stratified by first-line treatments.
Fig. 6: Somatic mutations and PD-L1 expression in NUAT-NKTCL received immunochemotherapy.

Similar content being viewed by others

Data availability

The newly generated WES data reported in this paper have been deposited in the Genome Sequence Archive (https://ngdc.cncb.ac.cn/gsa-human) with the accession number of HRA005217. The publicly available WGS/WES data can be retrieved from The National Omics Data Encyclopedia (NODE) (http://www.biosino.org/node) with the accession number of OEP000498.

References

  1. Wang H, Fu BB, Gale RP, Liang Y. NK-/T-cell lymphomas. Leukemia. 2021;35:2460–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yan Z, Yao Z, Wang H, Yao S, Wang X, Gao Y, et al. Plasma EBV-DNA and peripheral blood mononuclear cell EBV-DNA have disparate clinical relevance in patients with extranodal NK/T-cell lymphoma. J Clin Virol. 2022;157:105320.

    Article  CAS  PubMed  Google Scholar 

  3. Au WY, Weisenburger DD, Intragumtornchai T, Nakamura S, Kim WS, Sng I, et al. Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood. 2009;113:3931–7.

    Article  CAS  PubMed  Google Scholar 

  4. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–30.

    Article  PubMed  Google Scholar 

  5. Kim SJ, Yoon DH, Jaccard A, Chng WJ, Lim ST, Hong H, et al. A prognostic index for natural killer cell lymphoma after non-anthracycline-based treatment: a multicentre, retrospective analysis. Lancet Oncol. 2016;17:389–400.

    Article  CAS  PubMed  Google Scholar 

  6. Hong H, Li Y, Lim ST, Liang C, Huang H, Yi P, et al. A proposal for a new staging system for extranodal natural killer T-cell lymphoma: a multicenter study from China and Asia Lymphoma Study Group. Leukemia. 2020;34:2243–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiang L, Gu ZH, Yan ZX, Zhao X, Xie YY, Zhang ZG, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genetics. 2015;47:1061–6.

    Article  CAS  PubMed  Google Scholar 

  8. Wen H, Ma H, Cai Q, Lin S, Lei X, He B, et al. Recurrent ECSIT mutation encoding V140A triggers hyperinflammation and promotes hemophagocytic syndrome in extranodal NK/T cell lymphoma. Nat Med. 2018;24:154–64.

    Article  CAS  PubMed  Google Scholar 

  9. Xiong J, Cui BW, Wang N, Dai YT, Zhang H, Wang CF, et al. Genomic and transcriptomic characterization of natural killer T cell lymphoma. Cancer Cell. 2020;37:403–419.e406.

    Article  CAS  PubMed  Google Scholar 

  10. Dong G, Liu X, Wang L, Yin W, Bouska A, Gong Q, et al. Genomic profiling identifies distinct genetic subtypes in extra-nodal natural killer/T-cell lymphoma. Leukemia. 2022;36:2064–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oishi N, Satou A, Miyaoka M, Kawashima I, Segawa T, Miyake K, et al. Genetic and immunohistochemical profiling of NK/T-cell lymphomas reveals prognostically relevant BCOR-MYC association. Blood Adv. 2023;7:178–89.

    Article  CAS  PubMed  Google Scholar 

  12. Shafiee A, Shamsi S, Kohandel Gargari O, Beiky M, Allahkarami MM, Miyanaji AB, et al. EBV associated T- and NK-cell lymphoproliferative diseases: a comprehensive overview of clinical manifestations and novel therapeutic insights. Rev Medl Virol. 2022;32:e2328.

    Article  CAS  Google Scholar 

  13. Chen Z, Fang X, Huang H, Wang Z, Hong H, Chen M, et al. A proposal for a prognostic index for non-nasal type natural killer/T cell lymphoma after asparaginase-based treatment. Ann Hematol. 2020;99:2811–9.

    Article  CAS  PubMed  Google Scholar 

  14. Kataoka K, Miyoshi H, Sakata S, Dobashi A, Couronné L, Kogure Y, et al. Frequent structural variations involving programmed death ligands in Epstein-Barr virus-associated lymphomas. Leukemia. 2019;33:1687–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM, Mow B, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129:2437–42.

    Article  CAS  PubMed  Google Scholar 

  16. Tse E, Zhao WL, Xiong J, Kwong YL. How we treat NK/T-cell lymphomas. Journal of Hematology & Oncology. 2022;15:74.

    Article  CAS  Google Scholar 

  17. Cai J, Liu P, Huang H, Li Y, Ma S, Zhou H, et al. Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma. Signal Transduct Target Ther. 2020;5:289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:giab008.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinform. 2013;43:11.10.11–33.

  22. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28:1747–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.

    Article  CAS  PubMed  Google Scholar 

  26. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016;12:e1004873.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schober P, Vetter TR. Propensity score matching in observational research. Anesth Analg. 2020;130:1616–7.

    Article  PubMed  Google Scholar 

  28. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shyr C, Tarailo-Graovac M, Gottlieb M, Lee JJ, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Med Genom. 2014;7:64.

    Article  Google Scholar 

  30. Wang JJ, Siu MK, Jiang YX, Leung TH, Chan DW, Cheng RR, et al. Aberrant upregulation of PDK1 in ovarian cancer cells impairs CD8(+) T cell function and survival through elevation of PD-L1. Oncoimmunology. 2019;8:e1659092.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Louie BH, Kurzrock R. BAP1: not just a BRCA1-associated protein. Cancer Treatment Rev. 2020;90:102091.

    Article  CAS  Google Scholar 

  32. Song TL, Nairismägi ML, Laurensia Y, Lim JQ, Tan J, Li ZM, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood. 2018;132:1146–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xue W, Li W, Zhang T, Li Z, Wang Y, Qiu Y, et al. Anti-PD1 up-regulates PD-L1 expression and inhibits T-cell lymphoma progression: possible involvement of an IFN-γ-associated JAK-STAT pathway. OncoTargets Ther. 2019;12:2079–88.

    Article  CAS  Google Scholar 

  34. Liu ZL, Bi XW, Zhang XW, Lei DX, Liu PP, Yang H, et al. Characteristics, prognostic factors, and survival of patients with NK/T-cell lymphoma of non-upper aerodigestive tract: a 17-year single-center experience. Cancer Res Treatment. 2019;51:1557–67.

    Article  CAS  Google Scholar 

  35. Hopkins JL, Lan L, Zou L. DNA repair defects in cancer and therapeutic opportunities. Genes Dev. 2022;36:278–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen M, Linstra R, van Vugt M. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim Biophys Acta Rev Cancer. 2022;1877:188661.

    Article  CAS  PubMed  Google Scholar 

  37. Aggarwal C, Ben-Shachar R, Gao Y, Hyun SW, Rivers Z, Epstein C, et al. Assessment of tumor mutational burden and outcomes in patients with diverse advanced cancers treated with immunotherapy. JAMA Network Open. 2023;6:e2311181.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee J, Au WY, Park MJ, Suzumiya J, Nakamura S, Kameoka J, et al. Autologous hematopoietic stem cell transplantation in extranodal natural killer/T cell lymphoma: a multinational, multicenter, matched controlled study. Biol Blood Marrow Transplant. 2008;14:1356–64.

    Article  PubMed  Google Scholar 

  39. Song GY, Yoon DH, Suh C, Moon JH, Baek DW, Kim JS, et al. Open-label, single arm, multicenter phase II study of VIDL induction chemotherapy followed by upfront autologous stem cell transplantation in patients with advanced stage extranodal NK/T-cell lymphoma. Bone Marrow Transplant. 2021;56:1205–8.

    Article  CAS  PubMed  Google Scholar 

  40. Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA damage response and inflammation in cancer. Cancer Discov. 2023;13:1521–45.

    Article  CAS  PubMed  Google Scholar 

  41. Yap TA, Bardia A, Dvorkin M, Galsky MD, Beck JT, Wise DR, et al. Avelumab plus talazoparib in patients with advanced solid tumors: the JAVELIN PARP medley nonrandomized controlled trial. JAMA Oncol. 2023;9:40–50.

    Article  PubMed  Google Scholar 

  42. Kwon M, Kim G, Kim R, Kim KT, Kim ST, Smith S, et al. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. J Immunother Cancer. 2022;10:e005041.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lim JQ, Huang D, Tang T, Tan D, Laurensia Y, Peng RJ, et al. Whole-genome sequencing identifies responders to Pembrolizumab in relapse/refractory natural-killer/T cell lymphoma. Leukemia. 2020;34:3413–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for all patients who enrolled in this study and donate their clinical samples. We are also very grateful to researchers who shared WGS and WES data generated in their previous studies.

Funding

This work is supported by Guangdong Science and Technology Department (2017B020227002 to T.-Y. L and 2019A1515010742 to H. H), Medical Science and Technology Foundation of Guangdong Province (No. A2021426 to Z. W), National Natural Science Foundation of China (82270198 to H.-M. H), Cancer Innovative Research Program of Sun Yat-sen University Cancer Center (CIRP-SYSUCC-0022 to T.-Y. L).

Author information

Authors and Affiliations

Authors

Contributions

Tongyu Lin, Yang Liang and Huangming Hong designed and supervised the study. Zegeng Chen and He Huang performed the genomic data collection and analysis. Huageng Huang, Le Yu, Huawei Weng, and Jian Xiao helped with genomic data collection and curation. All authors provided study materials or patients, and contributed to the data interpretation and discussion. Zegeng Chen, Huangming Hong and Tongyu Lin wrote the manuscript. All authors reviewed the manuscript and approved for its submission.

Corresponding authors

Correspondence to Yang Liang, Huangming Hong or Tongyu Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The present study about human was carried out comply with the ethical standards of Helsinki Declaration II and approved by the participating hospitals.

Consent for publication

All authors give consent for the submission of the manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Huang, H., Huang, H. et al. Genomic features reveal potential benefit of adding anti-PD-1 immunotherapy to treat non-upper aerodigestive tract natural killer/T-cell lymphoma. Leukemia 38, 829–839 (2024). https://doi.org/10.1038/s41375-024-02171-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-024-02171-4

Search

Quick links