Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NORMAL HEMATOPOIESIS

Znf687 recruits Brd4-Smrt complex to regulate gfi1aa during neutrophil development

Abstract

Neutrophils are key component of the innate immune system in vertebrates. Diverse transcription factors and cofactors act in a well-coordinated manner to ensure proper neutrophil development. Dysregulation of the transcriptional program triggering neutrophil differentiation is associated with various human hematologic disorders such as neutropenia, neutrophilia, and leukemia. In the current study we show the zinc finger protein Znf687 is a lineage-preferential transcription factor, whose deficiency leads to an impaired neutrophil development in zebrafish. Mechanistically, Znf687 functions as a negative regulator of gfi1aa, a pivotal modulator in terminal granulopoiesis, to regulate neutrophil maturation. Moreover, we found BRD4, an important epigenetic regulator, directly interacts with ZNF687 in neutrophils. Deficiency of brd4 results in similar defective neutrophil development as observed in znf687 mutant zebrafish. Biochemical and genetic analyses further reveal that instead of serving as a canonical transcriptional coactivator, Brd4 directly interacts and bridges Znf687 and Smrt nuclear corepressor on gfi1aa gene’s promoter to exert transcription repression. In addition, the ZNF687-BRD4-SMRT-GFI1 transcriptional regulatory network is evolutionary conserved in higher vertebrate. Overall, our work indicates Znf687 and Brd4 are two novel master regulators in promoting terminal granulopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of two znf687 paralog-deficient zebrafish lines.
Fig. 2: Deficiency of znf687a specifically impairs neutrophil development in embryonic and adult zebrafish.
Fig. 3: Znf687 acts as a transcription repressor of gfi1aa in regulating neutrophil maturation.
Fig. 4: Brd4 orchestrates with Znf687 to repress gfi1aa expression during neutrophil development.
Fig. 5: Brd4 is recruited by Znf687 to the promoter region of gfi1aa.
Fig. 6: Brd4-Smrt corepressor complex mediates the transcriptional repression capacity of Znf687.
Fig. 7: A conserved role of ZNF687-BRD4-SMRT complex in mammalian neutrophils.

Similar content being viewed by others

Data availability

RNA sequencing dataset generated in this study has been deposited to Gene Expression Omnibus (GEO) database (GSE235609). These data are now available with an open access mandate.

References

  1. Lawrence SM, Corriden R, Nizet V. The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev MMBR. 2018;82:e00057–17.

    Article  CAS  PubMed  Google Scholar 

  2. Yvan-Charvet L, Ng LG. Granulopoiesis and Neutrophil Homeostasis: A Metabolic, Daily Balancing Act. Trends Immunol. 2019;40:598–612.

    Article  CAS  PubMed  Google Scholar 

  3. Fiedler K, Brunner C. The role of transcription factors in the guidance of granulopoiesis. Am J Blood Res. 2012;2:57–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gennari L, Rendina D, Falchetti A, Merlotti D. Paget’s Disease of Bone. Calcif Tissue Int. 2019;104:483–500.

    Article  CAS  PubMed  Google Scholar 

  5. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature 2018;562:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee JE, Park YK, Park S, Jang Y, Waring N, Dey A, et al. Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis. Nat Commun. 2017;8:2217.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Najafova Z, Tirado-Magallanes R, Subramaniam M, Hossan T, Schmidt G, Nagarajan S, et al. BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire. Nucleic Acids Res. 2017;45:127–41.

    Article  CAS  PubMed  Google Scholar 

  8. Stonestrom AJ, Hsu SC, Jahn KS, Huang P, Keller CA, Giardine BM, et al. Functions of BET proteins in erythroid gene expression. Blood. 2015;125:2825–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao L, Wang Y, Jaganathan A, Sun Y, Ma N, Li N, et al. BRD4-PRC2 represses transcription of T-helper 2-specific negative regulators during T-cell differentiation. EMBO J. 2023;42:e111473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roe JS, Vakoc CR. The Essential Transcriptional Function of BRD4 in Acute Myeloid Leukemia. Cold Spring Harb Symp Quant Biol. 2016;81:61–6.

    Article  PubMed  Google Scholar 

  11. Wu SY, Chiang CM. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem. 2007;282:13141–5.

    Article  CAS  PubMed  Google Scholar 

  12. Devaiah BN, Gegonne A, Singer DS. Bromodomain 4: a cellular Swiss army knife. J Leukoc Biol. 2016;100:679–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Latif AL, Newcombe A, Li S, Gilroy K, Robertson NA, Lei X, et al. BRD4-mediated repression of p53 is a target for combination therapy in AML. Nat Commun. 2021;12:241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sakamaki JI, Wilkinson S, Hahn M, Tasdemir N, O’Prey J, Clark W, et al. Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function. Mol Cell. 2017;66:517–32.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu B, Liu X, Han L, Chen X, Wu X, Wu J, et al. BRD4-directed super-enhancer organization of transcription repression programs links to chemotherapeutic efficacy in breast cancer. Proc Natl Acad Sci USA. 2022;119:e2109133119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn Publ Am Assoc Anat. 1995;203:253–310.

    CAS  Google Scholar 

  17. Hsu K, Kanki JP, Look AT. Zebrafish myelopoiesis and blood cell development. Curr Opin Hematol. 2001;8:245–51.

    Article  CAS  PubMed  Google Scholar 

  18. Galloway JL, Zon LI. Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr Top Dev Biol. 2003;53:139–58.

    Article  CAS  PubMed  Google Scholar 

  19. Zon LI. Developmental biology of hematopoiesis. Blood. 1995;86:2876–91.

    Article  CAS  PubMed  Google Scholar 

  20. Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, Traver D. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Dev Camb Engl. 2007;134:4147–56.

    CAS  Google Scholar 

  21. Bertrand JY, Kim AD, Teng S, Traver D. CD41 + cmyb + precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Dev Camb Engl. 2008;135:1853–62.

    CAS  Google Scholar 

  22. Zhang T, Huang Y, Liu W, Meng W, Zhao H, Yang Q, et al. Overexpression of zinc finger protein 687 enhances tumorigenic capability and promotes recurrence of hepatocellular carcinoma. Oncogenesis. 2017;6:e363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scotto di Carlo F, Whyte MP, Gianfrancesco F. The two faces of giant cell tumor of bone. Cancer Lett. 2020;489:1–8.

    Article  CAS  PubMed  Google Scholar 

  24. Melnick A, Carlile G, Ahmad KF, Kiang CL, Corcoran C, Bardwell V, et al. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol Cell Biol. 2002;22:1804–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao S, Wang Z, Wang L, Wang H, Yuan H, Liu X, et al. Irf2bp2a regulates terminal granulopoiesis through proteasomal degradation of Gfi1aa in zebrafish. PLoS Genet. 2021;17:e1009693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu M, Xu Y, Li J, Lian J, Chen Q, Meng P, et al. Genetic and epigenetic orchestration of Gfi1aa-Lsd1-cebpa in zebrafish neutrophil development. Dev Camb Engl. 2021;148:dev199516.

    CAS  Google Scholar 

  27. Vicente C, Conchillo A, García-Sánchez MA, Odero MD. The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit Rev Oncol Hematol. 2012;82:1–17.

    Article  PubMed  Google Scholar 

  28. Lambert JP, Picaud S, Fujisawa T, Hou H, Savitsky P, Uusküla-Reimand L, et al. Interactome Rewiring Following Pharmacological Targeting of BET Bromodomains. Mol Cell. 2019;73:621–38.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eagen KP, French CA. Supercharging BRD4 with NUT in carcinoma. Oncogene. 2021;40:1396–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wei Y, Ma D, Gao Y, Zhang C, Wang L, Liu F. Ncor2 is required for hematopoietic stem cell emergence by inhibiting Fos signaling in zebrafish. Blood. 2014;124:1578–85.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou W, He Y, Rehman AU, Kong Y, Hong S, Ding G, et al. Loss of function of NCOR1 and NCOR2 impairs memory through a novel GABAergic hypothalamus-CA3 projection. Nat Neurosci. 2019;22:205–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Divisato G, Formicola D, Esposito T, Merlotti D, Pazzaglia L, Del Fattore A, et al. ZNF687 Mutations in Severe Paget Disease of Bone Associated with Giant Cell Tumor. Am J Hum Genet. 2016;98:275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nguyen TT, Ma LN, Slovak ML, Bangs CD, Cherry AM, Arber DA. Identification of novel Runx1 (AML1) translocation partner genes SH3D19, YTHDf2, and ZNF687 in acute myeloid leukemia. Genes Chromosomes Cancer. 2006;45:918–32.

    Article  CAS  PubMed  Google Scholar 

  34. Wu T, Pinto HB, Kamikawa YF, Donohoe ME. The BET family member BRD4 interacts with OCT4 and regulates pluripotency gene expression. Stem Cell Rep. 2015;4:390–403.

    Article  CAS  Google Scholar 

  35. Liu W, Stein P, Cheng X, Yang W, Shao NY, Morrisey EE, et al. BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos. Cell Death Differ. 2014;21:1950–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Donati B, Lorenzini E, Ciarrocchi A. BRD4 and Cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abraham SA, Hopcroft LEM, Carrick E, Drotar ME, Dunn K, Williamson AJK, et al. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature. 2016;534:341–6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fraszczak J, Vadnais C, Rashkovan M, Ross J, Beauchemin H, Chen R, et al. Reduced expression but not deficiency of GFI1 causes a fatal myeloproliferative disease in mice. Leukemia. 2019;33:110–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. X Jiao (from the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA) for his critical manuscript reading. This work was supported by research funding from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

L.Y and S.T conducted most of the experiments and analyzed data. H.W conducted FACS analyses and cell sorting. H.Y and X.L performed RNA-seq, and conducted analysis of the RNA-seq data. Y.C maintained the zebrafish lines. H.d.T and J.Z provided advice regarding the experiments. J.Z designed the project, analyzed data, and wrote the manuscript.

Corresponding authors

Correspondence to Jun Zhu or Jun Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The study was approved by the Ethics Committee of Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. Zebrafish experimental procedures were conducted in accordance with the protocols approved by the Institutional Animal Care and Use Committee (IACUC) of Shanghai Jiao Tong University (2020-3#).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Tan, S., Wang, H. et al. Znf687 recruits Brd4-Smrt complex to regulate gfi1aa during neutrophil development. Leukemia 38, 851–864 (2024). https://doi.org/10.1038/s41375-024-02165-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-024-02165-2

Search

Quick links