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Mapping AML heterogeneity - multi-cohort transcriptomic
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Subtyping of acute myeloid leukaemia (AML) is predominantly based on recurrent genetic abnormalities, but recent literature
indicates that transcriptomic phenotyping holds immense potential to further refine AML classification. Here we integrated five
AML transcriptomic datasets with corresponding genetic information to provide an overview (n= 1224) of the transcriptomic AML
landscape. Consensus clustering identified 17 robust patient clusters which improved identification of CEBPA-mutated patients with
favourable outcomes, and uncovered transcriptomic subtypes for KMT2A rearrangements (2), NPM1 mutations (5), and AML with
myelodysplasia-related changes (AML-MRC) (5). Transcriptomic subtypes of KMT2A, NPM1 and AML-MRC showed distinct
mutational profiles, cell type differentiation arrests and immune properties, suggesting differences in underlying disease biology.
Moreover, our transcriptomic clusters show differences in ex-vivo drug responses, even when corrected for differentiation arrest
and superiorly capture differences in drug response compared to genetic classification. In conclusion, our findings underscore the
importance of transcriptomics in AML subtyping and offer a basis for future research and personalised treatment strategies. Our
transcriptomic compendium is publicly available and we supply an R package to project clusters to new transcriptomic studies.
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INTRODUCTION
In acute myeloid leukaemia (AML), recurrent genetic abnormalities
(RGA) have been identified through systematic genomic studies
[1–5] Based on these RGAs, the World Health Organization (WHO
2022) and International Consensus Classification (ICC 2022) define
several AML subtypes, as well as a heterogeneous subtype of AML
with myelodysplasia-related changes (AML-MRC) [6, 7]. RGAs are
essential for risk-stratification and are increasingly targeted with
drugs [8, 9].
AML subclassification is genetics-based, but transcriptomics holds

immense potential to refine AML classification further [1–3, 10–12].
Transcriptomic studies have led to the discovery of CEBPA-mutated
AML [13, 14], and NPM1-mutated AML subtypes with different cell
differentiation arrests and ex-vivo drug responses [15, 16]. Similar
stratification would be beneficial for AML-MRC, given its hetero-
geneity [17, 18]. Still, a comprehensive examination of AML subtypes
defined by gene expression has yet to be performed. Furthermore,
the differentiation arrest state is known to modify drug response in

AML [19], and failing to account for this effect when comparing drug
responses could skew conclusions.
Therefore, we integrated fivemRNAseq datasets with corresponding

genetic aberration data and annotated cases according to WHO and
ICC 2022 standards. We outline AML’s transcriptomic landscape and
define transcriptional subtypes with distinct gene expressions, genetic
aberrations, and cell type arrests. We relate the clusters to ex-vivo drug
responses independently of differentiation arrest and show how they
superiorly capture differences in response compared to genetic
classification. We provide all harmonised data and a transcriptional
cluster predictor for future research. Our study underscores the
importance of incorporating transcriptomic data in AML classification.

METHODS
Transcriptomic data
We acquired transcriptomics data of primary AML patients from blood or
bone marrow from BEAT [3, 20] (n= 425), TARGET [2] (n= 145), TCGA [1]
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(n= 150), and Leucegene [11, 21–23] (n= 399), and our in-house LUMC
[24] dataset (n= 95). Data statements and methods for transcriptome
sequencing are available in the referenced studies.
We acquired quantified gene expression for BEAT, TARGET and TCGA

from https://portal.gdc.cancer.gov (release 36) and implemented the same
pipeline for Leucegene and LUMC to harmonise quantification. In short,
FASTQ files were aligned and quantified with STAR [25] to the GRCh38
reference genome [26], using Gencode v36 [27] as the gene annotation
index which included 60 600 genes.
Gene expression count data were corrected with Combat-Seq [28] for

the variables “cohort”, “sex”, and “tissue”. We split Leucegene for the batch
correction into Leucegene_stranded and Leucegene_unstranded, since
different sequencing libraries were used. We removed 8057 genes that
were not detected in all cohorts, leaving 52,603 genes. Finally, we removed
genes detected in less than 200 samples or with less than 300 counts
leaving 41 862 genes for our final dataset. We normalised the corrected
count data using the geometric mean and variance stabilising transforma-
tion (VST) [29] and quantified the remaining cohort-specific variation using
kBET [30].

Genetic and patient data
We acquired genetic data for the samples from the referenced studies in
the form of mutation and fusion calling, and cytogenetics data and clinical
data on sex, age, blast percentage, and survival. Blacklisted fusions as
reported by Arriba [31] were removed from the fusion calling data.
We harmonised the data by standardising the annotation of gene

names, fusion genes, and karyotyping. Using genetic data, we subclassified
samples according to the WHO 2022 [6] and ICC 2022 [7]. Samples for
which we found no RGA and all genetic data available were annotated as
“No RGA found”. We classified samples with missing data and “No RGA
found” as “Inconclusive”.

Clustering
We employed consensus clustering [32, 33] on the batch-adjusted gene
expression. First, we created a weighted nearest neighbour graph [34]
using the 2000 most variable genes (MVGs). MVGs were selected via the
median absolute deviation from samples with a blast percentage over 70%
to minimise tumour microenvironment effects. Using the Leiden algorithm
[35] – with seed and resolution varied per iteration – we generated 300
cluster assignments from the graph for each n_clusters ranging from 10 to
20, totalling 3300 assignments.
From these 3300 assignments we created a consensus matrix with

values ranging between 0 and 1 based on pairwise co-clustering. We then
converted this matrix into a distance matrix (1 - consensus matrix) and
conducted Ward.D2 hierarchical clustering. The final cluster count was
determined based on the individual separation of WHO classes and
clusters displaying differential traits.

Cluster stability
To evaluate per sample clustering stability, we devised a stability score. We
constructed a consensus matrix for each n_clusters (300 assignments) and
subtracted each co-clustering value from 1 if it was below 0.5. Then, we
took the mean of all values per sample as the stability score, which ranged
from 0.5 to 1, with higher scores indicating less clustering ambiguity. To
investigate correlation between cluster stability and blast percentage we
performed a Spearman correlation test. Additionally, we generated tSNEs
using 100 to 2500 MVGs to visually assess cluster stability.

Cluster prediction
To predict cluster assignments we trained a one-vs-rest SVM per cluster. As
input we used the uncorrected gene expression of the 2000 MVGs used for
clustering. To select hyperparameters and evaluate performance we
utilised 5 × 5 nested cross-fold validation.
To improve predictions we included a reject option using a minimum

distance to the decision boundary. We determined this distance by
looping over possible minimum values for the predictions of the inner fold.
We selected the minimum value with the highest Kappa for the accepted
inner fold samples and an accuracy <0.5 for the rejected inner folds
samples.
The final model was trained on the whole dataset, using 5-fold cross-

validation to select hyperparameters and the minimum decision boundary
distance.

Differential gene expression analysis
Differential gene expression analysis between the clusters was performed
using DESeq2 [29] using the corrected gene counts. We performed one-
versus-rest analyses to identify differentially expressed genes in one cluster
compared to all others. We annotated genes as transcription factors or
coding for cell surface proteins using public databases [36, 37].

Aberration enrichment analysis
To test if aberrations occurred more in a cluster than in others we first
removed aberrations found in only one cohort or which occurred in less
than 1% of the samples. We also included high MECOM expression in the
analysis (VST expression >6, based on the tail of a MECOM expression
density plot). We tested for enrichment per aberration by performing an
one-sided Fisher exact test for one cluster versus all others and adjusted p-
values using the Benjamini–Hochberg (BH) procedure. We considered
aberrations with a false discovery ratio (FDR) < 0.05 enriched.

Survival analysis
We performed survival analysis using right censored overall survival data
by generating Kaplan–Meier (KM) curves on BEAT and TCGA survival data,
comparing different groups of patients with the log rank test. We also
performed Cox-regression using BEAT, TARGET and TCGA survival data for
different patient groups and included cohort, sex and age as co-variables
to analyse hazard ratios.

Expression based score
We created cell type scores to assess the differentiation arrest of AML
samples, using the mean expression of 30 marker genes for six
haematological cells [38]. Additionally, we created immune phenotype
scores for cytolytic infiltration and HLA I and HLA II antigen presenting cells
using the mean expression of marker genes [39].

Drug response analysis
To analyse drug response differences, we used ex-vivo drug response data
of 331 BEAT [3] samples, quantified as area under the curve (AUC). We
excluded drugs with less than 200 samples or missing data for any cluster,
leaving 103 of the 123 drugs. We used a Kruskal–Wallis test for each drug
with the AUC as response and clusters as groups to compare the average
drug response per cluster. Drugs with a significant difference (FDR < 0.05)
were analysed with one-sided Wilcoxon tests to identify clusters with low
AUCs. Additionally, we performed a Kruskal–Wallis test for each drug with
the ICC 2022 diagnosis as groups, to compare with clusters as groups.
Multivariate linear models (LM) were evaluated per drug to test if

clusters were sensitive to a drug when adjusted for cell type, with AUC as
response and cluster membership (one-versus-rest) and the six cell type
scores as explaining variables. Similarly, we fitted LMs but with cluster
membership and ICC 2022 diagnoses as variables. We considered clusters
sensitive to a drug if the cluster membership’s FDR was below 0.05 and the
LM coefficient was negative. All p-values were corrected using BH.

RESULTS
Multi-cohort AML gene expression compendium
We collected 1224 RNAseq samples from adult (BEAT, TARGET,
TCGA, Leucegene, LUMC) and paediatric (TARGET) cohorts with
corresponding genetic and clinical data (Fig. 1A). We quantified
gene expression with the same pipeline and corrected counts for
cohort, sex and source tissue (Supplementary Fig. 1). Sample
classification by their genetic data according to the WHO (Fig. 1C)
and ICC was successful for 97% of the samples. In line with
previous reports, frequencies of the AML subtypes were similar for
the adult cohorts but different between paediatric and adult
cohorts (Supplementary Table 1), confirming that our dataset is
representative of the AML landscape [5, 40].

Transcriptomics define 17 AML clusters
Next, we assigned AML cases to 17 transcriptional clusters using
consensus clustering (Supplementary Figs. 2, 3). We named the
clusters based on genetic diagnoses (Fig. 1B, Supplemental Figs. 4,
5). As expected, the distribution over the clusters was different for

J.F. Severens et al.

752

Leukemia (2024) 38:751 – 761

https://portal.gdc.cancer.gov


paediatric and adult cohorts, exemplified by the large percentage
of paediatric samples in the KMT2AT clusters (26%), and adult
samples in the NPM1T (93%) and AML-MRCT (94%) clusters
(Supplementary Table 1, Supplementary Fig. 6). However, samples
of identical AML genetic subtypes from adult and paediatric
cohorts clustered together, indicating that the 17 clusters capture
differences in AML biology.

We examined clustering robustness using the stability score
(Supplementary Fig. 7). Median clustering stability was high
(0.97–1.00), with AML-MRC(3)T showing the lowest stability. A
correlation test revealed a significant but weak correlation
(rho= 0.18, p-value < 0.001) between blast percentage and
clustering robustness, but blast percentage varied greatly in
clusters. tSNEs generated using different MVGs (Supplementary

Fig. 1 Transcriptomic analysis further stratifies AML. A Flowchart of the used data and methods. B Sankey plot showing the assignment of
WHO 2022 diagnoses over the identified clusters. C tSNE visualisation of the gene expression of patient samples. Each dot represents a
patient. The samples are coloured according to the WHO 2022 subtyping of AML. D The same tSNE visualisation as in C, but samples are
coloured according to the 17 clusters. E Dot plots that show enriched aberrations in the 17 clusters. The dots are coloured according to the
adjusted p-value. The dots are sized according to the sample fraction with the aberration in the cluster. The x-axis shows the aberrations, and
the y-axis shows the clusters. We only visualised enriched aberrations that occurred in at least 10% of the patients in a cluster.
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Fig. 8) were stable from 500 to 2500 features. These results show
that clustering was robust and only weakly influenced by blast
percentage.
We developed a transcriptional cluster predictor using uncor-

rected counts as input (accuracy= 0.90), demonstrating the
persistence of expression patterns. The quality of the predictor
was further improved (accuracy= 0.95) by including a reject
option (10% rejected) (Supplementary Fig. 9).
Next, we tested for enrichment of mutations, fusions and

cytogenetic aberrations (n= 102) (Fig. 1E, p-values and frequen-
cies in Supplementary Table 2). Four transcriptomic clusters
corresponded to singular genetic AML subtypes: RUNX1::-
RUNX1T1T (RUNX1::RUNX1T1: 94%, FDR < 0.001), CBFB::MYH11T

(CBFB::MYH11: 95%, FDR < 0.001), PML::RARAT (PML::RARA: 100%,
FDR < 0.001), and NUP98T (NUP98::NSD1: 45%, FDR < 0.001). Risk-
stratification for survival based on transcriptional subtypes
performed similarly to genetics (Supplementary Figs. 10 and 11).
We identified no enrichment for BCR::ABL1 and DEK::NUP214,
possibly due to their limited occurrence. For KMT2A rearrange-
ments, CEBPA mutations, NPM1 mutations, and AML-MRC, we

found evidence that transcriptomics can refine subtyping, as
described below.

Transcriptome analysis identifies two KMT2A-related clusters
The WHO classification defines a single KMT2A-rearranged subtype
(KMT2A-r), while the ICC recognises KMT2A::MLLT3 and other
KMT2A fusions as distinct [6, 7]. We identified two KMT2A fusion
clusters. KMT2A(1)T was significantly enriched for KMT2A::MLLT3
(31%, FDR < 0.001), KMT2A::MLLT10 (19%, FDR < 0.001) and any
KMT2A fusion (67%, FDR < 0.001), while KMT2A(2)T was enriched
for KMT2A::MLLT4 (67%, FDR < 0.001) and high MECOM expression
(80%, FDR < 0.001) (Fig. 2A, B). Interestingly, we found cases with
NPM1 mutations and trisomy 8/8q localised in KMT2A(1)T,
indicating that these lead to KMT2A fusion-like gene expression.
The genes LAMP5, and ADCY9 showed high expression in

KMT2A(1)T and low expression in KMT2A(2)T (Fig. 2B), and all have
been shown to contribute to AML pathogenesis [41, 42].
Additionally, the transcription factor (TF) ETV2 was highly
expressed in KMT2A(1)T, while the TF ERG displayed high
expression in KMT2A(2)T. The cell type scores revealed KMT2A(1)T

Fig. 2 Transcriptome analysis identifies two KMT2A-related clusters. A tSNE visualisation of patient samples, coloured according to KMT2A-
fusion or NPM1 mutation and trisomy 8. B Waterfall plot of aberrations in the KMT2A clusters, including the percentage of samples with the
aberration. The plot is combined with heatmaps showing the expression of marker genes and cell type scores. The columns are samples,
which are split according to transcriptional clusters. C Fraction of FAB annotations per cluster. HSC hematopoietic stem cells, Prog. progenitor,
GMP granulocyte-monocyte progenitor, Prom. promonocytes, Mono. monocytes, cDC conventional dendritic cells.
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to have a significantly higher promonocyte-like score (FDR <
0.001), while KMT2A(2)T was more hematopoietic stem cell (HSC)-
like (FDR < 0.001) (Fig. 2B, Supplementary Fig. 12). FAB annotations
showed similar results for KMT2A(1)T, which had a high M5
(monocytic leukaemia) fraction (90%), while KMT2A(2)T was more
mixed (Fig. 2C). Overall, we found that gene expression-based
separation of KMT2A-r did not align with the ICC 2022
classification.

The CEBPAT cluster indicates a favourable prognosis
As acknowledged in the ELN2022, patients with a CEBPA bZIP
inframe mutation have a favourable prognosis [8, 43]. We
identified a transcriptional CEBPAT cluster significantly enriched
for mutated CEBPA cases (72%, FDR < 0.001), with 42% of the
samples having a CEBPA bZIP indel, either as single mutation or
combined with an N-terminal frameshift mutation (Fig. 3A, B). The
remaining samples contained other mutations in the bZIP area or
N-terminal region or had no detectable CEBPAmutation. Of note, a
single CEBPA bZIP indel case resided outside the CEBPAT cluster.
This patient had an IDH-R132 mutation with a VAF= 0.47, while
the CEBPA bZIP in-frame mutation had a VAF= 0.21. This finding
suggests that the IDH-R132 mutation dominates the expression
pattern, placing this case in cluster AML-MRC(1)T. Conversely, all

CEBPAT cluster patients showed similar favourable outcomes (log-
rank test: p-value= 0.80), irrespective of whether the CEBPA bZIP
inframe mutation was detected (Fig. 3C). The CEBPAT cluster thus
marks patients with a favourable outcome regardless of CEBPA
mutation detection, which the CEBPAT expression profile can
detect.

Gene expression profiling identifies five transcriptional NPM1-
related clusters
The 2022 WHO and ICC classifications include one subtype of
NPM1-mutated AML [6, 7]. However, we identified five clusters
enriched for mutated NPM1 (Fig. 4). We observed elevated
expression of HOXA3, HOXB5, and MEIS1 (Fig. 4A), which has been
earlier associated with NPM1 mutations [44]. Interestingly, NPM1
mutation-lacking samples generally also exhibited high expression
of these genes, suggesting that there are alternative mishaps that
disrupt these genes leading to NPM1 mutated-like AML.
NPM1(1)T exhibited the highest percentage (95%, FDR < 0.001)

of NPM1mutated samples and was significantly enriched for IDH1-
R132 (25%, FDR < 0.001), IDH2-R140 (37%, FDR < 0.001), and TET2
(33%, FDR < 0.001) co-mutations (Fig. 4A). NPM1(2)T samples were
enriched for FLT3-ITD mutations (84%, FDR < 0.001), but FLT3-ITD
was also enriched in NPM1(1)T, NPM1(3)T and NPM1(4)T (42–43%,

Fig. 3 The CEBPAT cluster indicates a favourable prognosis. A Waterfall plot and gene expression heatmap of all samples in the CEBPAT

cluster and samples with a CEBPA mutation located outside the CEBPAT cluster. B tSNE visualisation of patient samples, coloured according to
the type of CEBPA mutation. For samples with multiple CEBPA mutations, we used the ordering as in A to decide which mutation to display.
C Kaplan–Meier curve of the survival of BEAT and TCGA patients in and outside the CEBPAT cluster.
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all FDR < 0.001). Additionally, NPM1(4)T and NPM1(5)T had a
significantly lower variant allele frequency for mutated NPM1
(Fig. 4B). We found two NPM1::MLF1 cases in our compendium,
which both clustered in NPM1(3)T. NPM1::MLF1 has been shown to

localise in the cytoplasm [45], like mutated NPM1, possibly leading
to a similar expression profile as NPM1-mutated cases.
Each of the NPM1-related clusters exhibited unique marker

genes (Fig. 4A). For instance, FTO expression was high in NPM1(1)T.
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Additionally, LYRM1, ADAM8, and DNAJC13 were elevated in
NPM1(2)T, NPM1(4)T, and NPM1(5)T, respectively. NPM1(3)T had a
less distinct expression pattern, suggesting a more heterogeneous
cluster. Also, we observed differential expression of TFs (RUNX1,
PRDM16, SPI1) [46, 47] – even in samples lacking the NPM1
mutation – and TF expression aligned with cell differentiation
stages.
NPM1(1)T and NPM1(2)T displayed a HSC-like expression

pattern, NPM1(3)T was mixed, whereas NPM1(4)T and NPM1(5)T

were more differentiated (Fig. 4A, Supplementary Fig. 12). FAB
annotations showed additional differences, with NPM1(5)T con-
taining fewer M4 (myelomonocytic leukaemia) but more M5
(monocytic leukaemia) cases than NPM1(4)T (Fig. 4C,D). Using
scores for HLA I and HLA II antigen-presenting cells [39] we found
NPM1(1)T to have significantly lower HLA I (FDR < 0.001) and HLA II
(FDR < 0.001) scores than the other clusters (Fig. 4E,F). NPM1(1)T

and NPM1(5)T patients were significantly older (FDR < 0.05), while
NPM1(3)T patients were younger (FDR < 0.01) (Supplementary
Fig. 6F). Our findings emphasise the existence of distinct NPM1-
related subsets, highlighting the limitations of relying solely on
genetic classification.

Gene expression profiling identifies five transcriptional AML-
MRC-related clusters
The ICC 2022 divides AML-MRC into three groups based on TP53
mutations, myelodysplasia-related gene mutations, and cytoge-
netic abnormalities [7]. Our study identified five gene expression-
based AML-MRC related clusters (Fig. 5), with varying fractions of
TP53 mutations, MRC gene mutations, and cytogenetic
abnormalities.
Despite sharing these mishaps, each cluster had unique

characteristics (Fig. 5A). AML-MRC(1)T was characterised by IDH1-
R132 (49%, FDR < 0.001) and IDH2-R170 (27%, FDR < 0.001)
mutations. A DNMT3A and IDH1/2 mutated subtype has been
reported [5], but 41% of the AML-MRC(1)T cases lacked DNMT3A
mutations. AML-MRC(2)T, AML-MRC(3)T, and AML-MRC(4)T were all
enriched (FDR < 0.001) for TP53 mutations, cytogenetic abnorm-
alities and high MECOM expression, and AML-MRC(3)T also
contained a large fraction of mutated MRC genes (65%, FDR <
0.001). AML-MRC(5)T stood out with the highest fraction of
mutated MRC genes cases (81%, FDR < 0.001) and the lowest
fraction of TP53 mutations (6%) and cytogenetic abnormalities
(34%).
We found marker genes for all clusters (Fig. 5A). For instance,

high SRSF12 marked AML-MRC(1)T, and LINC00865 marked AML-
MRC(5)T. AML-MRC(2)T presented high glycophorin genes and
UROD expression, suggesting an association with acute erythroid
leukaemia [48–50]. Distinct cell differentiation scores further
highlighted differences (Fig. 5A–C, Supplementary Fig. 12). For
example, AML-MRC(1)T showed high progenitor-like scores, with
65% M1 (minimal maturation) cases, and AML-MRC(3)T showed a
more differentiated pattern, with 54% M2 (significant maturation)
cases. AML-MRC(2)T was the only cluster with M6 (erythroid
leukaemia) – in line with high expression of erythrocyte cell
markers – and M7 (megakaryocytic leukaemia) cases. Additionally,
high cytolytic cell infiltration has been reported for AML-MRC

cases [39]. Using the same score (Fig. 5D) we found that the
cytolytic infiltration was significantly (FDR < 0.05) lower for AML-
MRC(1)T and higher for AML-MRC(2)T compared to the other AML-
MRC clusters. Our results demonstrate that different AML-MRC
transcriptomic clusters can be identified, showing genetic
enrichments that do not necessarily align with the ICC 2022
classification.

AML clusters exhibit cell type-independent differences in ex-
vivo drug responses
Finally, we assessed the drug sensitivity of the transcriptional AML
subtypes. Using ex-vivo drug response data, we discovered 101
drug-cluster combinations with significantly lower resistance
(FDR < 0.05), of which 21 combinations remained statistically
significant (FDR < 0.05) when adjusting for cell differentiation
status (Fig. 6, Supplementary Fig. 13, Supplementary Table 3).
The ex-vivo drug responses between NPM1-related clusters

were often divergent, exemplified by venetoclax and selumetinib
(Fig. 6A, B). NPM1(1)T, NPM1(2)T and NPM1(3)T mostly responded
positively to tyrosine kinase inhibitors and CDK kinase inhibitors.
NPM1(4)T and NPM1(5)T samples were more sensitive to PI3K and
MAPK kinase inhibitors. We also found drugs where only one
cluster was responsive, exemplified by axitinib for NPM1(4)T where
this effect remained significant (FDR < 0.05) when controlled for
cell type scores (Fig. 6C).
Several drugs demonstrated favourable ex-vivo responses in

KMT2A(1)T compared to the other clusters, exemplified by
idelalisib. For KMT2A(2)T we found no significant responsive
drugs, but testing was limited due to small cluster size. For the
AML-MRC clusters, most drugs showed strong resistance. Still,
specific drugs were more effective for AML-MRC(1)T, AML-MRC(4)T,
and AML-MRC(5)T (Fig. 6A, B), suggesting potential for targeted
treatments in this diverse, high-risk patient group.
Next, we examined if transcriptional clusters provide insights

beyond genetic classifications. Comparing the AUCs of each drug
between groups, we found 71 drugs with significantly different
(FDR < 0.05) median AUCs between the clusters, while only 21
drugs were significantly different between ICC 2022 classes
(Fig. 6D). Additionally, 57 of the 101 cluster-drug combinations
remained significant (FDR < 0.05) when cluster membership and
ICC 2022 diagnosis were included in a LM, suggesting that the
transcriptional clusters offer information beyond genetic
classification.
Overall, our findings offer novel opportunities for targeted

therapy in AML. We observed effective drug responses even after
adjusting for differentiation status, possibly allowing gene
expression-based subtypes to guide treatment strategies.

DISCUSSION
This study presents an overview of transcriptomics in AML and
provides a framework for transcriptional subtyping. We integrate
multiple cohorts to identify 17 robust transcriptional subtypes that
subclassify ~75% of our datasets’ patients. We make the
harmonised data and a cluster predictor publicly available,
facilitating future research.

Fig. 4 Gene expression profiling identifies five transcriptional NPM1-related clusters. A Waterfall plot of aberrations in the NPM1-related
clusters, including the percentage of samples with the aberration. The plot is combined with heatmaps showing the expression of marker
genes and cell type scores. The columns are samples, which are split according to transcriptional clusters. B Boxplot showing the scaled
variant allele frequency (VAF) of mutated NPM1 from the BEAT, Leucegene, and LUMC cohorts. The VAF was scaled per gene and study to allow
for a combined analysis. We used a two-sided Wilcoxon test to test for statistical differences and Benjamini–Hochberg to adjust p-values for
multiple testing. C tSNE visualisation of patient samples, coloured according to the FAB annotation. Only NPM1-related clusters are coloured;
the rest are in grey. D Fraction of FAB annotations per cluster. E and F show boxplots of HLA I and HLA II antigen presenting cell scores,
respectively. Tests were performed as in B, but were only done between the two KMT2AT, the five NPM1T and the five AML-MRCT clusters. FDR
values: *<0.05, **<0.01, ***<0.005, ****<0.001. HSC hematopoietic stem cells, Prog. progenitor, GMP granulocyte-monocyte progenitor, Prom.
promonocytes, Mono. monocytes, cDC conventional dendritic cells, VAF variant allele frequency.
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For the CEBPAT cluster, we show that patients without a detected
CEBPA bZIP indel mutation still have similar favourable survival.
Patients without the canonical CEBPA mutation in the CEBPAT

cluster could be explained by undetected mutations, given the
complexities of CEBPA sequencing. Also, CEBPA hypermethylation
has been described to lead to a similar expression profile [51]. The
use of the CEBPAT gene signature for risk stratification could be a
relevant alternative to detect these favourable-outcome patients.

KMT2A(1)T mainly featured KMT2A with the fusion partners
MLLT3, MLLT10 and MLLT1 – all TFs in the super elongation
complex whose perturbation leads to disrupted hematopoietic
lineage commitment [52]. In contrast, KMT2A(2)T featured
KMT2A::MLLT4, which is thought to cause leukaemia by promoting
self-association [53]. Interestingly, MLLT3, MLLT10 and MLLT1 all
fuse a specific region of KMT2A, but MLLT4 shows less specificity
[54]. Collectively, these results suggest that two types of

Fig. 5 Gene expression profiling identifies five transcriptional AML-MRC-related clusters. A Waterfall plot of aberrations in the AML-MRC-
related clusters, including the percentage of samples with the aberration. We did not plot enriched individual large chromosomal mishaps.
The plot is combined with heatmaps showing the expression of marker genes and cell type scores. The columns are samples, which are split
according to transcriptional clusters. MRC genes are ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2. Cytogenetic
abnormalities are the ICC 2022 aberrations that define AML-MRC with cytogenetic abnormalities. B tSNE visualisation of patient samples,
coloured according to the FAB annotation. Only AML-MRC clusters samples are coloured are coloured; the rest are in grey. C Fraction of FAB
annotations per cluster. D Boxplots of cytolytic cell score per cluster. We used a two-sided Wilcoxon test to test for statistical differences and
Benjamini–Hochberg to adjust p-values for multiple testing. Tests were performed only between the two KMT2AT, the five NPM1T and the five
AML-MRCT clusters. FDR values: *<0.05, **<0.01, ***<0.005, ****<0.001. HSC hematopoietic stem cells, Prog. progenitor, GMP granulocyte-
monocyte progenitor, Prom. promonocytes, Mono. monocytes, cDC conventional dendritic cells.
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oncogenic mechanisms involving KMT2A fusions exist that may be
marked with unique gene expression patterns.
We identified five NPM1-related clusters, further underpinning

findings of transcriptional heterogeneity among NPM1-mutated

patients [15, 16, 55], but also providing additional insight into co-
mutations and detailed subtypes. We observed several samples
from NPM1-related clusters that lacked the NPM1 mutation.
Several rare NPM1 fusions, like NPM1::MLF1, have been described

Fig. 6 AML clusters exhibit cell type-independent differences in ex-vivo drug responses. A Heatmap coloured according to the median
scaled area under the curve (AUC) of the ex-vivo drug response per drug and cluster. On the left is the drug name, and on the right is the drug
family. A green colour indicates a lower median AUC for the drug for the samples in the cluster compared to the other clusters, indicating a
strong drug response. Red indicates a higher median AUC, meaning a weak drug response. B Boxplots showing ex-vivo drug responses for a
selection of drugs. We performed significance testing using a two-sided Wilcoxon test. FDR values: *<0.05, **<0.01, ***<0.05, ****<0.001.
C Plots of the multivariate linear models with cluster membership and the six cell type scores as independent variables and AUC as the
dependent variable. On the x-axis, the coefficient of the variables in the models is shown, and the y-axis shows the -log10 of the p-value for
each variable. The shown p-values are not corrected and are for visualisation to indicate variable importance in the multivariate model. The
corrected p-values of the cluster membership variable are shown in Supplementary Table 3. The red line indicates a p-value of 0.05. D Barplots
of the top 40 drugs with highest corrected p-values for Kruskal–Wallis tests between ex-vivo drug response and clusters or ICC 2022 diagnosis
to test if there were significant differences in the median AUCs. All p-values were corrected with Benjamini–Hochberg.
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to lead to cytoplasmic localisation of NPM1, comparable to the
canonical NPM1 frameshift [45, 56]. These non-canonical mishaps
could lead to a NPM1-mutated-like presentation and similarities in
survival and drug response should be explored. Additionally,
NPM1(1)T was mutually exclusive enriched for IDH1/2 and TET2 co-
mutations. IDH1/2 mutations lead to an aberrant alpha-
ketoglutarate metabolism and are functionally complementary
to TET2 loss-of-function mutations [57]. While NPM1(1)T and
NPM1(5)T show significant enrichments for TET2, only NPM1(1)T

shows this mutual exclusivity with IDH1/2. This suggests that only
NPM1(1)T is driven by aberrant alpha-ketoglutarate metabolism,
which should be further studied using metabolomics.
Similarly, cytogenetic abnormalities, AML-MRC mutations and

high MECOM expression were found in all AML-MRC clusters, but
lead to different gene expression. A possible explanation could be
clonal architecture and the differentiation state of the cell
acquiring the leukemic aberration, both known to influence the
biology of the resultant leukaemia [58, 59]. To our knowledge, we
are the first to show different gene expression-based subgroups in
AML-MRC, with divergent drug responses. Accurate identification
of these clusters requires gene expression analysis, showing the
relevance of our work.
We found no additional survival differences between other

clusters. However, data availability limited the survival analysis,
and different treatment protocols across studies could have led to
confoundment. Survival differences between transcriptional sub-
types should thus be further explored in one large cohort.
However, we did find marked differences in drug responses
between the clusters. Ideally, new studies should test in-patient
efficacy of drugs with good ex-vivo responses in transcriptional
subtypes. Furthermore, transcriptional AML subtyping could aid
specialists in the complex field of clinical care and lead to
multidisciplinary tailored-based treatment advice [60].
In conclusion, the transcriptional subtypes reveal heterogeneity

in AML not captured by genetic classification. Integration of
transcriptomics into AML research and diagnostics could improve
disease understanding and lead to more treatment options.
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