Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

FLT3 tyrosine kinase inhibition modulates PRC2 and promotes differentiation in acute myeloid leukemia

Abstract

Internal tandem duplication mutations in fms-like tyrosine kinase 3 (FLT3-ITD) are recurrent in acute myeloid leukemia (AML) and increase the risk of relapse. Clinical responses to FLT3 inhibitors (FLT3i) include myeloid differentiation of the FLT3-ITD clone in nearly half of patients through an unknown mechanism. We identified enhancer of zeste homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2), as a mediator of this effect using a proteomic-based screen. FLT3i downregulated EZH2 protein expression and PRC2 activity on H3K27me3. FLT3-ITD and loss-of-function mutations in EZH2 are mutually exclusive in human AML. We demonstrated that FLT3i increase myeloid maturation with reduced stem/progenitor cell populations in murine Flt3-ITD AML. Combining EZH1/2 inhibitors with FLT3i increased terminal maturation of leukemic cells and reduced leukemic burden. Our data suggest that reduced EZH2 activity following FLT3 inhibition promotes myeloid differentiation of FLT3-ITD leukemic cells, providing a mechanistic explanation for the clinical observations. These results demonstrate that in addition to its known cell survival and proliferation signaling, FLT3-ITD has a second, previously undefined function to maintain a myeloid stem/progenitor cell state through modulation of PRC2 activity. Our findings support exploring EZH1/2 inhibitors as therapy for FLT3-ITD AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EZH2 is downregulated by FLT3 inhibition in AML cell lines.
Fig. 2: EZH2 is downregulated by FLT3 inhibition in primary AML.
Fig. 3: FLT3i induce EZH2 protein instability.
Fig. 4: FLT3i reduce H3K27me3 at PRC2 target genes.
Fig. 5: FLT3i increase expression of PRC2 target genes.
Fig. 6: FLT3i and PRC2i promote myeloid differentiation in murine and human AML.
Fig. 7: FLT3i and PRC2i reduce leukemic burden and promote differentiation in vivo.

Similar content being viewed by others

Data availability

Mass spectrometry raw files generated in this study are publicly available in the Chorus repository (www.chorusproject.org) at the project number 1806. Analyzed data from proteome, ChIP sequencing, and RNA sequencing studies are available in the supplemental files. Raw ChIP-seq files were deposited to GEO (GSE243857).

References

  1. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity. 1995;3:147–61.

    Article  CAS  PubMed  Google Scholar 

  3. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 2000;19:624–31.

    Article  CAS  PubMed  Google Scholar 

  4. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10:1911–8.

    CAS  PubMed  Google Scholar 

  5. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98:1752–9.

    Article  CAS  PubMed  Google Scholar 

  6. Erba HP, Montesinos P, Kim HJ, Patkowska E, Vrhovac R, Žák P, et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2023;401:1571–83. 5/13/2023

    Article  CAS  PubMed  Google Scholar 

  7. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377:454–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cortes JE, Khaled S, Martinelli G, Perl AE, Ganguly S, Russell N, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019;20:984–97.

    Article  CAS  PubMed  Google Scholar 

  9. Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N. Engl J Med. 2019;381:1728–40.

    Article  CAS  PubMed  Google Scholar 

  10. Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene. 2002;21:2555–63.

    Article  CAS  PubMed  Google Scholar 

  11. Levis M, Allebach J, Tse K-F, Zheng R, Baldwin BR, Smith BD, et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood. 2002;99:3885–91.

    Article  CAS  PubMed  Google Scholar 

  12. Nybakken GE, Canaani J, Roy D, Morrissette JD, Watt CD, Shah NP, et al. Quizartinib elicits differential responses that correlate with karyotype and genotype of the leukemic clone. Leukemia. 2015;30:1422–5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sexauer A, Perl A, Yang X, Borowitz M, Gocke C, Rajkhowa T, et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood. 2012;120:4205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McMahon CM, Canaani J, Rea B, Sargent RL, Qualtieri JN, Watt CD, et al. Gilteritinib induces differentiation in relapsed and refractory FLT3-mutated acute myeloid leukemia. Blood Adv. 2019;3:1581–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levis MJ, Perl AE, Altman JK, Gocke CD, Bahceci E, Hill J, et al. A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations. Blood Adv. 2018;2:825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369:111–21.

    Article  CAS  PubMed  Google Scholar 

  17. van Galen P, Hovestadt V, Wadsworth Ii MH, Hughes TK, Griffin GK, Battaglia S, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell. 2019;176:1265–.e1224.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Margueron R, Reinberg D. The polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Basheer F, Giotopoulos G, Meduri E, Yun H, Mazan M, Sasca D, et al. Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML. J Exp Med. 2019;216:966–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, et al. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Nat Acad Sci USA. 2012;109:5028–33.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M, et al. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood. 2012;120:1107–17.

    Article  CAS  PubMed  Google Scholar 

  22. Xu B, On DM, Ma A, Parton T, Konze KD, Pattenden SG, et al. Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood. 2015;125:346–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyer SE, Qin T, Muench DE, Masuda K, Venkatasubramanian M, Orr E, et al. DNMT3A haploinsufficiency transforms FLT3ITD myeloproliferative disease into a rapid, spontaneous, and fully penetrant acute myeloid leukemia. Cancer Discov. 2016;6:501–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Colligan SH, Amitrano AM, Zollo RA, Peresie J, Kramer ED, Morreale B, et al. Inhibiting the biogenesis of myeloid-derived suppressor cells enhances immunotherapy efficacy against mammary tumor progression. J Clin Investig. 2022;132:e158661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DiNardo CD, Stein EM, Botton SD, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378:2386–98.

    Article  CAS  PubMed  Google Scholar 

  26. Erba HP, Fathi AT, Issa GC, Altman JK, Montesinos P, Patnaik MM, et al. Update on a phase 1/2 first-in-human study of the menin-KMT2A (MLL) inhibitor ziftomenib (KO-539) in patients with relapsed or refractory acute myeloid leukemia. Blood. 2022;140:153–6.

    Article  Google Scholar 

  27. Issa GC, Aldoss I, DiPersio JF, Cuglievan B, Stone RM, Arellano ML, et al. The menin inhibitor SNDX-5613 (revumenib) Leads to durable responses in patients (Pts) with KMT2A -rearranged or NPM1 mutant AML: updated results of a phase (Ph) 1 study. Blood. 2022;140:150–2.

    Article  Google Scholar 

  28. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130:722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B, et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol. 2010;13:87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Göllner S, Oellerich T, Agrawal-Singh S, Schenk T, Klein H-U, Rohde C, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23:69–78.

    Article  PubMed  Google Scholar 

  31. James AJ, Smith CC, Litzow M, Perl AE, Altman JK, Shepard D, et al. Pharmacokinetic profile of gilteritinib: a novel FLT-3 tyrosine kinase inhibitor. Clin Pharmacokinet. 2020;59:1273–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  33. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. The Cancer Genome Atlas Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  Google Scholar 

  35. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Fujii S, Fukamachi K, Tsuda H, Ito K, Ito Y, Ochiai A. RAS oncogenic signal upregulates EZH2 in pancreatic cancer. Biochem Bioph Res Co. 2012;417:1074–9.

    Article  CAS  Google Scholar 

  37. Riquelme E, Behrens C, Lin HY, Simon G, Papadimitrakopoulou V, Izzo J, et al. Modulation of EZH2 expression by MEK-ERK or PI3K-AKT signaling in lung cancer is dictated by different KRAS oncogene mutations. Cancer Res. 2016;76:675–85.

    Article  CAS  PubMed  Google Scholar 

  38. Sung PJ, Sugita M, Koblish H, Perl AE, Carroll M. Hematopoietic cytokines mediate resistance to targeted therapy in FLT3-ITD acute myeloid leukemia. Blood Adv. 2019;3:1061–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim J, Woo AJ, Chu J, Snow JW, Fujiwara Y, Kim CG, et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell. 2010;143:313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Melgar K, Walker MM, Jones LM, Bolanos LC, Hueneman K, Wunderlich M, et al. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci Transl Med. 2019;11:eaaw8828.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Park HJ, Gregory MA, Zaberezhnyy V, Goodspeed A, Jordan CT, Kieft JS, et al. Therapeutic resistance in acute myeloid leukemia cells is mediated by a novel ATM/mTOR pathway regulating oxidative phosphorylation. Elife. 2022;11:e79940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lenard A, Xie HM, Pastuer T, Shank T, Libbrecht C, Kingsley M, et al. Epigenetic regulation of protein translation in KMT2A-rearranged AML. Exp Hematol. 2020;85:57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park DJ, Vuong PT, Vos SD, Douer D, Koeffler HP. Comparative analysis of genes regulated by PML/RARα and PLZF/RARα in response to retinoic acid using oligonucleotide arrays. Blood. 2003;102:3727–36.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPα expression. Blood. 2004;103:1883–90.

    Article  CAS  PubMed  Google Scholar 

  45. Lavau C, Szilvassy SJ, Slany R, Cleary ML. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX–ENL. EMBO J. 1997;16:4226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Radomska HS, Bassères DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y, et al. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med. 2006;203:371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bowman RL, Dunbar A, Mishra T, Xiao W, Waarts MR, Maestre IF, et al. Modeling clonal evolution and oncogenic dependency in vivo in the context of hematopoietic transformation. Biorxiv. 2022.05.18.492524; https://doi.org/10.1101/2022.05.18.492524.

  48. Morschhauser F, Tilly H, Chaidos A, McKay P, Phillips T, Assouline S, et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol. 2020;21:1433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Izutsu K, Makita S, Nosaka K, Yoshimitsu M, Utsunomiya A, Kusumoto S, et al. An open-label, single-arm, phase 2 trial of valemetostat in relapsed or refractory adult T-cell leukemia/lymphoma. Blood. 2023;141:1159–68.

    Article  CAS  PubMed  Google Scholar 

  50. Fujita S, Honma D, Adachi N, Araki K, Takamatsu E, Katsumoto T, et al. Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid leukemia. Leukemia. 2018;32:855–64.

    Article  CAS  PubMed  Google Scholar 

  51. Pronk CJH, Rossi DJ, Månsson R, Attema JL, Norddahl GL, Chan CKF, et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell. 2007;1:428–42.

    Article  CAS  PubMed  Google Scholar 

  52. Bruner JK, Ma HS, Li L, Qin ACR, Rudek MA, Jones RJ, et al. Adaptation to TKI treatment reactivates ERK signaling in tyrosine kinase-driven leukemias and other malignancies. Cancer Res. 2017;77:5554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA, Pittsenbarger J, et al. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell. 2021;39:999–1014.e1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kennedy VE, Peretz C, Lee P, Chyla B, Sun Y, Dail M, et al. Multi-omic single-cell sequencing reveals genetic and immunophenotypic clonal selection in patients with FLT3-mutated AML treated with gilteritinib/venetoclax. Blood. 2022;140:2244–6.

    Article  Google Scholar 

  55. McMahon CM, Ferng T, Canaani J, Wang ES, Morrissette JJD, Eastburn DJ, et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. Cancer Discov. 2019;9:1050–63.

    Article  CAS  PubMed  Google Scholar 

  56. Buelow DR, Bhatnagar B, Orwick S, Jeon JY, Eisenmann ED, Stromatt JC, et al. BMX kinase mediates gilteritinib resistance in FLT3-mutated AML through microenvironmental factors. Blood Adv. 2022;6:5049–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Traer E, Martinez J, Javidi-Sharifi N, Agarwal A, Dunlap J, English I, et al. FGF2 from marrow microenvironment promotes resistance to FLT3 inhibitors in acute myeloid leukemia. Cancer Res. 2016;76:6471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang X, Sexauer A, Levis M. Bone marrow stroma‐mediated resistance to FLT3 inhibitors in FLT3‐ITD AML is mediated by persistent activation of extracellular regulated kinase. Br J Haematol. 2014;164:61–72.

    Article  CAS  PubMed  Google Scholar 

  59. Sashida G, Harada H, Matsui H, Oshima M, Yui M, Harada Y, et al. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun. 2014;5:4177.

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Lara-Astiaso D, Goñi-Salaverri A, Mendieta-Esteban J, Narayan N, Del Valle C, Gross T, et al. In vivo screening characterizes chromatin factor functions during normal and malignant hematopoiesis. Nat Genet. 2023;55:1542–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gambacorta V, Beretta S, Ciccimarra M, Zito L, Giannetti K, Andrisani A, et al. Integrated multiomic profiling identifies the epigenetic regulator PRC2 as a therapeutic target to counteract leukemia immune escape and relapseepigenetic control of immune evasion and relapse after HCT. Cancer Discov. 2022;12:1449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Shared Resources at Roswell Park Comprehensive Cancer Center were supported by the National Cancer Institute Cancer Center Support Grant 5P30 CA016056 and R50 CA211108. This work was supported by National Institutes of Health grants (R21 CA198621, K08 CA230190, R37 CA226433, and T32 HL007439-36) and the Biff Ruttenberg Foundation. Dr. Sung received additional support from Benjamin and Mary Siddons Measey Foundation, American Society of Hematology, the Leukemia & Lymphoma Society, and the Roswell Park Alliance Foundation. Dr. Carroll receives support from Veterans Administration Merit Award I01BX004662.

Author information

Authors and Affiliations

Authors

Contributions

PJS and MC designed all experiments, interpreted all data, and wrote the manuscript. SS, KK, and BAG performed and analyzed proteomic experiments. SSR, HMX, and KMB performed and analyzed ChIP-Seq experiments. KMB provided intellectual input and experimental guidance on functional genomics. KB and BM performed trametinib experiments and assisted with animal studies. MS and LP performed experiments for revisions. GW performed pathology assessment of murine histology. RLB and RLL provided Flt3ITD Npm1c AML cells and experimental guidance. JP and MJN developed the spectral flow cytometry panel and assisted with analysis. SEM provided Flt3ITD Dnmt3aKO mice and experimental guidance. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Pamela J. Sung.

Ethics declarations

Competing interests

PJS, MS, SSR, HMX, KB, BM, GBW, LP, KK, JP, MJN, BAG, and SS declare no relevant competing interests. RLB has received honoraria from Mission Bio and is a member of the Speakers Bureau for Mission Bio. RLL is on the supervisory board of Qiagen and is a scientific advisor to Imago, Mission Bio, Bakx, Zentalis, Ajax, Auron, Prelude, C4 Therapeutics, and Isoplexis. RLL received research support from Abbvie, constellation, Ajax, Zentalis, and Prelude. RLL has received research support from and consulted for Celgene and Roche and has consulted for Syndax, Incyte, Janssen, Astellas, Morphosys, and Novartis. RLL has received honoraria from Astra Zeneca and Novartis for invited lectures and from Gilead and Novartis for grant reviews. SEM received research funding from CellCentric. KMB has received research funding from Syndax Pharmaceuticals, Inc. MC is on the Scientific Advisory Board for Cartography Biosciences.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, P.J., Selvam, M., Riedel, S.S. et al. FLT3 tyrosine kinase inhibition modulates PRC2 and promotes differentiation in acute myeloid leukemia. Leukemia 38, 291–301 (2024). https://doi.org/10.1038/s41375-023-02131-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02131-4

Search

Quick links